THE COMPUTATIONAL GENERATION OF A CLASS OF PUN

by

CHRISTOPHER VENOUR

A thesis submitted to the
Department of Computing and Information Science
in conformity with the requirements for

the degree of Master of Science

Queen’s University
Kingston, Ontario, Canada
September, 1999

Copyright © Christopher Venour, 1999

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ontawa ON K1A ON4

Canada Canada

Your fie Votre référence

Our fie Notre rétdcance
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis m microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propnété du
copyright in this thesis. Neither the droit d’auteur qui protege cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-45304-9

Abstract

This document examines what makes texts funny and explores how sophisticated a computer
program and database would need to be in order to produce jokes of varying complexity. A
precise model of a class of pun is then created and implemented into a program that can generate
jokes. By doing so, we show that some forms of punning can be codified and thus puncture some
of the mystique surrounding humour. Our analysis of humour also reveals some new fundamental

building blocks that will be required for comprehensive language generation and understanding.

Acknowledgments

[would like to thank my supervisor Dr. Michael Levison for his guidance in the creation of this
thesis. I would also like to thank my family who has always supported me in my schooling and in
all things. Thank you also to my family at St. James for their support and interest in me. A
special thanks to Mary whose gentle and kind ways are a blessing to me and all who know her.
And finally I would like to thank my brother-in-law Michael without whom this thesis would not

have been completed. I am very grateful to him for all his kindness and encouragement.

=Y

Contents

1 INTRODUCTION

1.1 Humour and Computational linguistics.

1.2 Relevance of the research

1.3 Goals

2 DEVELOPING A PRACTICAL MODEL OF HUMOUR

2.1 Attardo and Raskin’s theory of humour

2.2 Dividing humour into two categories..

2.2.1 Verbal vs. Situational humour

2.3 The Ambiguity Theory of Humour

2.3.1 Low-level ambiguities.

2.3.2 High-level ambiguity

2.3.3 Are all jokes ambiguous?........

...................

2.3.4 What kind of ambiguity is funny?

2.3.5 Script precedence vs. script equality...

2.3.6 Where does the ambiguity occur?..

2.4 A Practical Model of Humour

2.4.1 Choose a Narrative Strategy

vae

10

10

11

12

.16

19
19
20

21

21

21

2.4.2 Construct Schemata 23
2.4.3 Choose a Template 25
2.4.4 Find Targets and Situation 26

3 PREVIOUS AUTOMATED JOKE ALGORITHMS 28
3.1 Lessard and Levison’s model of Tom Swifties 28
3.1.1 Computational generation of Tom Swifties 29

3.2 Lessard and Levison’s model of riddles w32
3.2.1 Computational generation of this class of riddles 33

3.3 Binsted’s model of a class of riddles.... 33
3.3.1 Computational generation of this class of riddles 34

3.4 What components of the practical model (Section 2.4) are performed by the computer in

previous joke-generators? 36
4 MODELING AND GENERATING HCPPS 37
4.1 Why use common phrases? 37
4.2 Components of HCPPs 38
4.3 Levels of complexity of HCPPs 39
4.4 Focusing on a subclass of homophone pun 40
4.5 Required Lexical Database Elements 42

4.6 The Schemata 43

iv

S IMPLEMENTATION 56

5.1 Populating the Lexical Database 56
5.1.1 The reserved fields 57
5.1.2 HCPP Lexical entries and their relations 57

5.2 Building the Lexicon 61
5.2.1 Generate the Initial List... 62
5.2.2 Remove unuseful homophones and add common phrases to the lexicon..................... 63
5.2.3 Add the remaining words making up the common phrases to the lexicon. 66
5.2.4 Find certain relations to lexical entries and add them to the lexicon 68

5.3 Generating the JOKES ... icrieeecrvresttecnescesaneasscasesecsrsnstassmanssanessesssssssssssasssnseessnnees 68

6 ANALYSIS OF RESULTS 69
6.1 Evaluating the output 69
6.2 Improving the joke generator 70

7 CONCLUSION 74

7.1 Summary tetrssenecessssesaessssissssnniresasane st b bt bas s ane e nessnsases 74

7.2 Possible extensions and improvements 74

7.3 The next generation 75

7.4 Conclusion 81

BIBLIOGRAPHY 83

A The lexicon, morphology rules, attributes and terminals 8§
B The implemented schemata 95
C The generated jokes 97
D A sample questionnaire 99
E The jokes’ scores 103

Vita 105

vi

List of Tables

I Jokes illustrating Attardo and Raskin’s parameters.

11

2 Examples of verbal humour and situational humour

3 Word-level ambiguities

4 Examples of puns with word-level ambiguity

5 Examples of substring-level ambiguity.

6 Examples of jokes using phrase-level ambiguity

7 Examples of syntactic and high-level ambiguity

8 The different kinds of ambiguity that appear in jokes

9 AmDbIZUOUS [EXLS......cccccrcrmreersesrsrrnnresnarsrsonans

10 Examples of Schemata and Templates

......

11 Examples of Tom Swifties.

12 Situational Tom Swifties

13 Syntagmatic and paradigmatic homonym riddles

14 Lexical relations used to generate a class of riddles

15 Some of the different kind of bases in HCPPs

16 Some of the different syntaxes of the common phrases.

vii

12

13

14

15

e 15

18

20

24

29

32

39

41

17

18

19

20

22

23

24

25

27

28

A range of puns emerging from a single common phrase “x kicks the habit™

Lexical relations used to generate a class of riddles.

.....................

The different kinds of words appearing in the lexicon

A listing and description of the reserved fields in VINCI

The lexical fields for nouns

The lexical fields for verbs

The lexical fields for adjectives

The types of phrases handled by the schemata

Examples of jokes with different scores

The average score of each schema

Puns output by schema 6b and a variation of it

Puns output by present and improved generator

viii

43

58

58

61

61

67

70

71

75

78

List of Figures

1 Anardo and Raskin’s six joke parameters. 9
2 A sequence of steps for artificially generating jokes 22
3 An uninstantiated schema 23
4 An instantiated schema 23
5 An uninstantiated schema 26
6 The schema for simple Tom Swifties 30
7 A VINCI grammar for generating simple Tom Swifties..... 31
8 A VINCI grammar for generating a class of paradigmatic homonym riddles 33
9 The similarity between Tom Swifties and HCPPs... 39
10 The relations required for different word or phrase categories 4
11 Schema #1 oo eceeceeeccece e ceecnesaneeneemnnanee 45
12 Schema #2 46
13 Schema #3 47
14 Schema #4 48
IS Schema #5 ...ccneeeiiinieiicineineeeereeccneceeeenees 49

16 Schema #6 50

17 Schema #6b 51
18 Schema #7 52
19 Schema #8 53
20 Schema #9....... 54
21 Schema #10 55
22 Example records from a VINCI IEXICOMNooemeemeeeerecreresecesesnrsressessensieensssnsassssnsnssncss 57
23 The different relations required for words in the lexicon 59-60
24 The lexical entries for four homophones after step 1 has completed 64
25 The first steps in creating the lexicon eeeestasameesesessessttsteasasaransneaneessesssennrnssen 65
26 Adding common phrases to the lexicon................... 66
27 The lexicon after Step 5.2.3......cormircariereiremmrerneernenenniessessseneasasssresesaanessasanssnsssssessssssons 67
28 The lexicon after steps 5.2.1-5.2.4 68
29 Implementation of schema #1 in VINCI68
30 The average scores of the jokes 70
31 The number of votes per score 71
32 A variation of SChema #0Dc.e e teeeseesstosentasarnansne s s se s nesan s ennens 76

33 Part of the upgraded semantic network

34 Part of the upgraded semantic network

xi

81

81

Chapter 1

Introduction

1.1 Humour and Computational linguistics

This thesis describes methods for automatically generating a type of pun: the "homonym
common phrase pun” or "HCPP". A lot of research into humour has explored "why we make
jokes or what they mean” or "what aspects of jokes are common to particular cultures and what
aspects transcend culture” {LLL93]. In her dissertation Kim Binsted writes: "Although a great deal
of work has been done on humour in psychology, literature and sociology, less has been done in
linguistics, and little in Al or computational linguistics” [BR94, 12]. When linguists have
considered the subject of humour, they often resort to informal taxonomy, classifying jokes in
terms of the kind of linguistic play involved, but only in vague and general terms (see [Chi92],
[Ho771, [Cu88]). Most of their research ignores or only superficially analyses the detailed
mechanisms of humour. Computational linguists, however, must understand these mechanisms
before any progress can be made in automatically generating or detecting humorous material.
This thesis describes a precise model of the "HCPP" and implements a program to generate that
class of puns. In doing so it confirms that some forms of humour can be codified and it reveals
some new fundamental building blocks that will be required for comprehensive language

generation and understanding.

1.2 Relevance of the research

The study of humour is an important research topic for a number of reasons. Natural language

understanding and generation programs aim to model linguistic phenomena, and since humour is

a component of natural language, it too is an important area of research in the field of Artificial
Intelligence (AI). Minksy argued that Al research aims to have a computer execute "a task which,
if done by a human, requires intelligence to perform” [Min63]. Thus, joking, a quintessentially
human act, lies within the domain of artificial intelligence.

The analysis of humour is also important because it can help guide the development of a
lexical database which will ultimately need to be constructed for natural language understanding.
For computers to achieve truly automated natural language understanding, they will probably
require access to an enormously complex semantic network or database in which words and ideas
have subtle links between them. The kind of links necessary and the complexity of this database
have not been fully delineated. Jokes and quips are an example of natural language that relies
heavily on subtle links, so this study will shed light on the giant network that will be required to
generate and understand natural language.

Humour research also brings up the interesting question of how sophisticated a computer
system needs to be in order to produce even the simplest joke. Levison and Lessard point out that
linguistic humour is an "ideal testing ground for the points of contact between cognitive and
linguistic knowledge" [LL95]. From our research, we have found that some good jokes can
emerge from simple linguistic play, but that a complex system with a large knowledge base and
some grasp of logic and common sense is necessary to generate consistently interesting jokes.

Humour is also worthy of study because it "provides us with valuable insights into the
mechanisms which underlie normal’ language production” [LL92, 175]. We will be
concentrating on verbal puns which, for the most part, consist of two sentences that share certain
semantic relations or links. Studying puns of this kind reveals the complexity of the process
human beings take for granted when they generate a single coherent sentence or multiple

sentences that relate to each other.

And finally, the study of what makes something funny is an interesting question in its own
right. Attardo and Raskin write that "the text of a joke is always fully or in part compatible with
two distinct scripts” [AR91, 308]. In straightforward ’just the facts’ kind of communication,
ambiguity is viewed as negative because it is an obstacle to comprehension. But other types of
discourse such as metaphor, idioms, poetic language and humour often encourage ambiguity
because interesting connections between normally dissociate concepts can be made. Studying
this process is a worthy endeavor because poets and punsters perform a kind of cross-breeding of
disparate ideas, giving rise to new, and sometimes interesting and entertaining ideas which

invigorate and enrich the cultural imagination.

1.3 Goals
The goals of this thesis are to:
1. determine what kinds of links between words are necessary for generating HCPPs.
2. derive algorithms for generating these kinds of puns.
3. construct a small database from which that class of puns can be generated.
4. implement some of the algorithms using the natural language generator VINCI.
S. evaluate the performance of the program and suggest ways of filtering out bad

resuits.
6. draw conclusions about this kind of humour and natural language generation in
general.

In Chapter 2 we will discuss previous theories about humour and from them devise a practical
model of humour. Chapter 3 will examine previous attempts at generating jokes automatically.
Chapter 4 describes the algorithms designed for generating our chosen class of puns (goals 1 and
2 above) and the database they make use of. Chapter S describes how the algorithms are

implemented in VINCI (goals 3 and 4). Chapter 6 will analyze the performance of our joke

generator and suggest ways of improving it (goal S) while Chapter 7 will summarize what we

have leammed about humour and natural language generation (goal 6).

Chapter 2

Developing a Practical Model of Humour

In this chapter we discuss Attardo and Raskin’s general theory of humour and extend it to
support the goals of this research. Attardo and Raskin are two of the first researchers to
begin to look at the mechanisms at work in humourous statements. Their work, which is
more formal and detailed than previous research, offers important insights into what
makes a text funny. Their theory is still not specific enough, however, to provide
concrete guidance for developing a program that can generate jokes. In fact their model
seems to suggest that a computer would need to possess a lot of cognitive power before it
could generate jokes. Therefore we present in section 2.1.2 a general theory of humour
that is inspired by Attardo and Raskin’s model but is more detailed and computationally

tractable than theirs.

2.1 Attardo and Raskin’s theory of humour

Attardo and Raskin {AR91] analyzed a corpus of light-bulb jokes and postulated that there are
six joke parameters by which all jokes (not just light-bulb jokes) can be classified. These six

parameters are:

e Language

e Narrative strategy
e Target

e Situation

e Logical mechanism

e Script opposition

The language parameter of the joke describes "all the choices at the phonetic, phonologic,
morphophonemic, morphologic, lexical, syntactic, semantic and pragmatic levels of language

structure” [AR91, 298]. In short, this parameter specifies the way the joke is worded. The content

a | How many <stereotyped group> does it take to
screw in a light bulb? Five. One to hold the light
bulb and four to turn the table he’s standing on.

b The number of <stereotyped group> needed to same as (a) in all but the language parameter
screw in a lightbulb? Five - one holds the bulb
and four turn the table.

c It takes five <stereotyped group> to screw in a same as (a) but with a new narrative strategy
light bulb: one to hold the light bulb and four to
turn the table he’s standing on.

d How does a <stereotyped person> brush his
teeth? He holds the brush and moves his head.

e How does a <stereotyped person> fan himself? | same as (d) but with a new "situation” parameter.
He holds the fan and shakes his head

f A T-shirt with the slogan "Gobi Desert Canoe jokes (a) - (e) all use the same logical

Club”. mechanism of role reversal. This joke however,
uses a different logical mechanism called
juxtaposition

g Customer: "I'd like to return this pair of shoes "garden path” logical mechanism.
please”. Clerk: "Did you wear them at all?”
Customer: "Only once, while taking a bath".

Table 1: Jokes illustrating Attardo and Raskin’s parameters.

(and some of the form) of the joke is determined by the five other parameters. This content can
be expressed in different ways. For example, jokes (a) and (b) in Table 1 have all the other joke
parameters in common but their language parameter is different (i.e. they are worded differently).
The narrative strategy parameter describes the different forms a joke can take. For example a
joke can be a riddle, conundrum, or expository text. An expository version of joke (a) or (b)
would be (¢). The target of a joke is a stereotyped group such as Poles, lawyers or blondes which
acts as the butt of the joke. This parameter is optional because not all jokes ridicule. The event or

situation in a joke describes an activity that is taking place "such as changing a light bulb,

crossing the road, playing golf" [RAR93, 125). For example jokes (d) and (e) are similar in that
they describe absurd ways of performing simple tasks. The only real difference between the two
Jjokes is the situation or activity in which the absurdity is manifest. The logical mechanism
parameter describes in what way logic is being undermined or played with in a joke. Jokes (a) -
(e), for example, all employ the same logical mechanism of role reversal. The normally static
things - the ground (on which the table rests), and the person’s head do not usually move when
performing the stated activities. An example of a different kind of logical mechanism is
Jjuxtaposition, which can be seen in joke (f) or the garden path phenomena in (g).

The last parameter in Attardo and Raskin’s list is script oppesition. They claim that "the text
of a joke is always fully or in part compatible with two distinct scripts and ... the two scripts are
opposed to each other in a special way" [AR91, 308]. Some of the ways scripts can be opposed
are: real vs. unreal, good vs. bad, high status vs. low status or nondumb vs. dumb. For instance
Jjokes (a) -(e) are examples of the nondumb vs. dumb opposition.

Kim Binsted suggests that Attardo and Raskin are mistaken in saying that two scripts in a joke
are opposed. Often they are not opposites but just different [Bin96, 17]. See, for example, the

following joke:

How many psychiatrists does it take to change a light bulb? Only one but the
bulb has got to really want to change.

There is no script opposition here - changing a lightbulb and a person changing are not opposites.
But there is a script difference thanks to a play on the homonym “"change" - one script is about
psychiatry and the changes it can promote, the other is about changing lightbulbs (homonyms are
words that have the same form (spoken or written or both) but differ in meaning. The homonym
brings together two dissociate concepts and misleadingly suggests that there is some semantic

similarity between them.

Attardo and Raskin arrange these parameters in the way shown in Figure 1. The diagram
represents "a process in which the decisions and choices about the various traits and ingredients
[of a joke] are made in a justified logical order" but what "it does not mean is that jokes are
actually produced this way by the speakers” [AR91, 314]. Thus "the order of levels is totally
devoid of any temporal value - a lower level is not a later level” [AR91, 327]. This kind of
modeling may be familiar to students of linguistics. For example the model for generating a
sentence "start(s) with the initial symbol S and pass(es) many underlying levels of decreasing
depth and abstraction and experienc(es) complex transformations, all before reaching the surface
form of the sentence” [AR91, 327]. But it "would be absurd to suggest that this is how a native
speaker produces the same sentence” [AR91, 327]. Similarly, the model analyzing the
components of a joke "do not correspond to the consecutive states of actual production” [AR91,
327].

Although they delve more deeply into the structure of jokes than many of their predecessors,
Attardo and Raskin claim from the start that they have not developed "a model of joke
production and that, therefore, production-related considerations do not and cannot inform the
model” [AR91, 294]. Therefore they do not describe the sequence of steps a computer might be
programmed to perform to generate a joke. More importantly, however, their joke parameters are
not described in enough detail to offer concrete guidance in the development of a joke-generating
program. The parameters are described at a high level and this seems to suggest that a computer
would need to possess a lot of cognitive power - something which researchers in artificial
intelligence have found extremely difficult to implement - in order to generate a joke. For
example a computer would need to possess an extensive knowledge base to choose the
appropriate props required for the situation, wield the power of logic and cornmon-sense in order
to subvert them (know thy enemy’) and create appropriate sentences given a chosen narrative

strategy and the values of all the other parameters.

Script
Opposition

Logical
Mechanism

L

Situation

|

Target

I

Narrative
Strategy

Language

Figure 1. Attardo and Raskin’s six joke parameters [AR91, 325].

10

Nonetheless, Attardo and Raskin’s insights into humour are valuable and their model is a
good starting point for constructing a more detailed model of humour in Section 2.3 and finally,

the model of humour which we chose to implement (described in Section 2.4).

2.2 Dividing humour into two categories

Do we, as Attardo and Raskin’s model suggests, really have to wait for an essentially intelligent
machine to be built before humour can be generated? Probably not. The algorithmic modeling of
humour becomes more feasible if we divide humour into two broad categories and choose the

category that is more manageable - i.e. has less need of cognitive power.

2.2.1 Verbal vs. Situational humour
Two thousand years ago, Cicero wrote
For there are two types of wit, one employed upon facts, the other upon words.
(De Oratore, II, LIX, 239-40)
Today many linguists categorize humour in the same way, dividing it into situational humour and
verbal humour (or prosaic vs. poetic [Ho77], contextual vs. linguistic [Bin96]). Verbal humour,

is based on the following characteristics of utterances:

e phonological (the sound of words)
e morphoiogical (how words are formed)

e syntactic (how words are put together to form sentences) [LL95]

An example of this genre is shown in Table 2(a). Unlike situational jokes, verbal humour
depends heavily on form - on the lexical choices and syntax of the sentence - and often fails to be
funny if synonyms or paraphrases of the punch line are used [LL95]. For example if we were to
change the punch line to "Unfortunately none of the ten puns did", the paragraph is no longer

hurnorous.

11

Situational humour on the other hand, consists of jokes in which no particular element in a
sentence is crucial to the joke. An example is in Table 2(b). This joke can be expressed in a
variety of ways - changing its syntax or form does not affect the humour of the utterance. Jokes
of this kind are extremely hard to model and implement because encyclopedic knowledge, logic
and common sense, the holy grails of artificial intelligence, are called upon to create and
understand them.

This thesis will focus on the more realizable goal of generating instances of verbal humour.
Verbal humour plays with linguistic devices and relations and hence is more susceptible to
modeling than more cognitively complex situational humour. Investigating the generation of

verbal

a A man entered a pun contest. He submitted ten puns in the hope that one would win. Unfortunately,
no pun in ten did.

b | A poll was conducted in which 1000 women were asked if they would sleep with Bill Clinton. 35% of
the women surveyed said yes, 40% said no and 25% said never again.

Table 2: Examples of (a) verbal humour and (b) situational humour.

humour may aiso act as a useful entry point into identifying and solving some of the difficulties

of generating situational humour.

2.3 The Ambiguity Theory of Humour

Attardo and Raskin claim that "the text of a joke" (presumably both verbal and situational jokes
since they do not, as we have, distinguish between linguistically-based jokes and more
cognitively complex ones) "is always fully or in part compatible with two distinct scripts”
[AR91, 308]. Often these two (or more) scripts exist within an ambiguity (an ambiguity is an
expression able to be interpreted in more than one way). This insight acts as the foundation for

constructing a more detailed and practical model of humour than Attardo and Raskin’s. Pepicello,

12

Greene and Binsted also assert the central role of ambiguity in humour and distinguish between

"low-level" ambiguity and "high-level” ambiguity.

2.3.1 Low-level ambiguities.
Low-level ambiguities "allow several different senses for a word or words in a spoken or
written text” [Bin96, 38]. This type of ambiguity predominates in verbal humour and functions at

the level of words, substrings and phrases.

Word-level ambiguity

A text with word-level ambiguity contains a word with multiple meanings. The
pronunciation or spelling (or both) of a word in a sentence suggests two or more meanings for
that word. Since there are two parameters at work here (pronunciation and spelling), there are
four different ways a word can be ambiguous.
L. word sense ambiguity: a word with one phonological form and one written form corresponds
to two or more meanings. This kind of word is called a homograph. (Homographs are words that
are pronounced the same and written in the same way but differ in meaning). Table 4(a) uses

word sense ambiguity.

sound written linguistic term ___examples

1 | word sense ambiguity same same homograph “bank”(financial
institution), “bank”(river’s
edge).

2 | spelling ambiguity same different | homophone “hair” “hare”

3 | pronunciation ambiguity different | same homograph “wind”(which blows
through the trees),
“wind"(the action of
winding).

4 | two different words different | different “whistle” “kite”

Table 3: Word-level ambiguities.

13

2. spelling ambiguity: one word corresponds to two or more written words which are pronounced
the same but have different meanings. This kind of word is called a homophone'. Table 4(b) uses
spelling ambiguity.

3. pronunciation ambiguity: one written form corresponds to two or more phonological forms and
meanings as shown in Table 4(c). Jokes using this kind of ambiguity contain homographs (words
which are written in the same way and may or may not have the same pronunciation) and are
visual rather than oral jokes because when the joke is said out loud, only one of the phonological
forms is expressed. Perhaps for that reason, they are rare.

4. Two words are different in both pronunciation and spelling. These are not words upon which a

pun would revolve.

Substring-level ambiguity
Two words that do not look or sound identical to each other can be similar enough that their

substrings are suggestive of each other. Table 4(d) is an example. In this joke there

® s a substring similarity between spook/spec
@ are clues in the surrounding sentences ("short-sighted" and "What do ... wear") that

suggest the fake word is supposed to be evocative of the word "spectacles”.

There are four different ways a substring of a word can resemble a word, as illustrated in Table

a Where do snowmen keep their money? In snow pun with a homograph in it.
banks.

b What do you get when you cross a rabbit witha | pun with a homophone in it.
lawn sprinkier? Hare spray.

c They drove down the mountain switchbacks as pun with a homograph in it.
the hurricane set in. It was a very windy road.

! Homonyms are a superset of homographs and homophones. In other words, homographs are homonyms
and homophones are homonyms but not vice versa.

14

d "What do short-sighted ghosts wear”? pun with substring replacement in it.
"Spooktacles”.

Table 4: Examples of puns with word-level ambiguity.

5. All of these words can be used to create humorous statements. For instance, “‘I hate

chemistry’ Tom said acidly” or "What's a cat with eight lives? An octopus”.

word substring word evoked identical feature
a_| acidly acid acid root word (sound and sight)
b | octopus pus puss sound
c_| windy wind wind sight
d | spectacles spec spook consonants
Table 5: Examples of substring-level ambiguity.
Phrase-level ambiguity:

In phrase-level ambiguity, word boundaries are played with. For instance the last syllable of a
word in a phrase and the first syllable of the word that follows it can form a word, or two words
can join together to form a single word as in Table 6(a). Another kind of phrase-level ambiguity
occurs when syllables of non-adjacent words are swapped (this is called metathesis) "to suggest
(wrongly) a similarity in meaning between two semantically-distinct phrases” as in Table 6(b) or

6(c) or when one phrase is mistaken for another as in Table 2(a) [Bin96, 6].

Syntactic ambiguity
Another kind of low-level ambiguity is syntactic ambiguity. It describes the situation in
which a sentence has multiple meanings because it can be parsed in more than one way. An

example of a joke that uses syntactic ambiguity is Table 7(a). The ambiguity, of course, is

15

a Why didn't the frog sit on the toadstool. Because | two adjacent words forming a single word.
there wasn't much room (mushroom).

b | What's the difference between a torn flag and a swapping of consonants in non-adjacent words
bent sixpence? One’s a tattered banner and the (metathesis).
other’s a battered tanner.

¢ | I'd rather have a bottle in front of me than a more complicated metathesis. The syllables in
frontal lobotomy. common to both phrases are: Tront’ Y’ bot’ ‘me’.
Those not shared are in’and 'of).

Table 6: Examples of jokes using phrase-level ambiguity.

a | "Would you rather have an elephant kill you or a | syntactic ambiguity
gorilla?” "I'd rather have the elephant kill the
gorilla".

b | "How can you tell if an elephant has been in your | contextual ambiguity
fridge”? "Footprints in the butter”,

c | "Waiter, there’s a fly in my soup!” "Don’t shout pragmatic ambiguity
so loud, sir, or everyone will want one”.

d | "Why do birds fly south in the winter?" "Because | focus ambiguity
it'’s too far to walk"

Table 7: Examples of syntactic ambiguity (a) and high-level ambiguity (b-d) [Bin96, 39].

whether the gorilla is (i) a subject or (ii) an object. Parsing (i) is more obvious than parsing (ii)
because the question cleverly leads us into making a faulty assumption. Given that most of us are
interested in self-preservation, it would be absurd to ask our preference between being killed or
having an animal killed so we discount parse (ii).

Also, we are subtly fooled by the question because the elephant and the gorilla are both
animals in the wild and so we unconsciously group them together as altemate subjects for the
verb "kill". This kind of shrewd manipulation of knowledge and reasoning comes into play in
situational humour. Therefore Kim Binsted oversimplifies her analysis of joke 7(a) when she
implies that it is only syntactically complex. The ambiguity of this joke depends on not just
syntax but reasoning and encyclopedic knowledge. In other words, the ambiguity in this joke is a

hybrid of low-level and high-level ambiguity. High-level ambiguity, described in the next

16

section, plays with reason and knowledge. Thus it is important to keep in mind that many jokes
that are classified as examples of verbal humour might also contain high-level ambiguities and

jokes considered examples of situational humour might contain low-level ambiguities.

2.3.2 High-level ambiguity

Examples of situational humour exploit high-level ambiguity (although they often contain low-
level ambiguities as well). These types of ambiguity are not linguistically based but instead
involve the manipulation or play of logic, common sense and world knowledge®. Thus in
situational humour, "the senses of the individual words are not in question, only the
interpretation of the whole text” [Bin96, 38]. Because this kind of humour works by
manipulating logic or world knowledge, there are as many kinds of situational jokes as there are
logical tenets and facts about the world. It would be impossible to compile a complete list of the
different kinds of ways situational jokes are ambiguous but we will describe three to give the

reader an idea of this kind of ambiguity.

Contextual ambiguity

Binsted claims that contextual ambiguity is a "conscious manipulation of social decorum”
[Bin96, 40] and provides item (b) in Table 7 as an example. The ambiguity (incongruity might be
a better word in this case) which creates the humour in the text is that if an elephant had in fact
been inside the fridge, it would have destroyed the fridge and would not have just delicately left
footprints in the butter. Binsted states that "there is no linguistic ambiguity ... (in this joke)
because neither the question nor the punchline have more than one interpretation” [Bin96, 40].
She chooses to ignore that "being in someone’s fridge” is a common phrase which means having

taken something out of the fridge and instead sees only the literal interpretation of someone

17

having bodily entered the fridge. Both interpretations are absurd - elephants dont appear in
people’s homes and take things from the fridge (but not as absurd as you might think because
anthropomorphism is common in jokes). Nor can an elephant climb into someone’s fridge and
just leave footprints in the butter. But the joke does not really depend on the question being

interpreted in two ways. It is better if both interpretations are discemned but this is not necessary.

Pragmatic ambiguity

Pragmatic knowledge “concerns how sentences are used in different situations and how use
affects the interpretation of the sentence” [Al195, 10]. Item (c) in Table 7 is an example of a joke
that makes use of pragmatic ambiguity. In this joke, the act of shouting functions as a kind of
homonym because two different emotions can be ascribed to it. In our culture, a shout or
exclamation can result from anger or it can spring from happiness or excitement. But given the
situation - the obviously negative experience of having a fly in one’s soup - the emotion we
would reasonably expect the shouting patron to be feeling is anger. The waiter’s response to the
patron’s outburst is funny because he interprets or pretends to interpret the exclamation as a sign
of gastronomic gusto rather than disgust. Thus the confusion in this joke is not based on the kind
of linguistic trickery of low-level ambiguity but rather more cognitively complex knowledge of

context and human psychology.

Focus ambiguity

The focus or point of the sentence is under-constrained in joke (d) of Table 7. Like joke (a), this
pun is a hybrid of low-level and high-level ambiguity. The syntax of the sentence, which allows
"why" to refer to different levels of causation, is crucial because it creates the necessary

ambiguity in which cognitive knowledge is played with. The high-level ambiguity makes use of a

2 World knowledge is the general knowledge about the structure of the world that language users must have

18

kind of meta world knowledge - knowledge about the state of an average human being’s
knowledge of the world and hence what a "reasonable” question might be. The "why fly"
interpretation is absurd because the answer to it is so obvious. However, asking why birds fly to
a certain area during the winter season would be a more challenging and viable question - the
reason for their migration south is not so obvious. Table 8 summarizes the different ways that

jokes make use of ambiguity.

low-level ambiguity:

words:
e the pronunciation and spelling of two words are identical.
e the pronunciation of two words is identical.
e the spelling of two words is identical.
e the words have a partial phonetic ressemblance. (i.e. paronymy).

substrings:
e the pronunciation and spelling of a word’s substring are identical to some other word|
¢ the pronunciation of a word’s substring and some other word is identical.
o the spelling of a word’s substring and some other word is identical.
e neither the sound nor spelling of a word’s substring and some other word are identical

but the two words still resemble each other (paronymy).

phrases:
e words or syllables of words next to each other form a word.
e syllables of non-adjacent words are swapped to form new words.
e a word contains other words within it.
e a phrase contains a different phrase within it.

syntax:
e a sentence can be parsed in more than one way.

high-level ambiguity:
any aspect of logic, reasoning or normal experience is played with. Some examples are
contextual ambiguity, pragmatic ambiguity, focus ambiguity.

Table 8: The different kinds of ambiguity that appear in jokes.

in order to, for example, maintain a conversation” [All95 10].

19

2.3.3 Are all jokes ambiguous?
Attardo and Raskin claim that "the text of a joke is always fully or in part compatible with two
distinct scripts” [AR91, 308]. Often those two or more scripts coexist within an expression that is
able to be interpreted in more than one way - i.e. within an ambiguity. Indeed all puns contain an
ambiguity but not all jokes do. For example 2(b) does not contain a phrase or sentence which can
be interpreted in multiple ways. But it does contain multiple scripts. One script consists of what
we expect - a regular poll which ends up with “25% are not sure”. The second script is what
actually occurs. In other words, in these types of jokes, one script represents what the audience of
the joke expects - given its knowledge of the world or its common sense or what it thinks should
logically follow - and the other script represents what actually (and surprisingly) occurs.

Thus all jokes seem to contain multiple scripts but not all jokes are ambiguous. Ambiguity is
only one way those two or more scripts can manifest themselves. This thesis concentrates on
verbal humour and so will deal exclusively with texts containing an ambiguous phrase or

sentence.

2.3.4 What kind of ambiguity is funny?

All puns contain a linguistic ambiguity but not all ambiguous texts are funny. For example, joke
9(a) is ambiguous - we do not know whether "Tom" or "John" is the antecedent of "He" - but it is
not humorous. One of the reasons why the text is not funny is because the ambiguity in it needs
to be resolved as in example 9(d). Simply resolving the ambiguity, however, does not render the
passage funny, as example 9(b) makes clear. The ambiguity has to be resolved in a surprising
way. Thus text 9(b) is not funny because it is obvious that Tom, the victim of a crime would be

furious.

20

Even if the ambiguity is resolved in a surprising way, however, the text needs to somehow
justify the second script and have it make some kind of sense. For example, in 9(c), the
ambiguity is resolved in a surprising way - the thief rather than the victim is furious - but to most
readers the text is probably more confusing or absurd rather than humorous because no reason is
given for the thief’s anger. The joke makes more sense if we offer some kind of rationalization
for the surprising second script. Thus 9(d) is an improvement of 9(c) because it contains a
rationalization for the surprising second script. The result is a funny comment about the thief’s
self-centredness and skewed moral view - the fury resulting from the theft does not emanate from

the victim of this crime but from a petulant thief who is unhappy with the stolen item.

John ate Tom's chocolate bar. He was furious.

A text with unresolved ambiguity is not funny.

John ate Tom's chocolate bar. He was furious
because he wanted to eat it.

The ambiguity is resolved but there is no
surprise. The result is not funny.

John ate Tom's chocolate bar. He was furious -
John that is.

John ate Tom’s chocolate bar. He was furious -
the bar was stale.

The ambiguity is resolved in a surprising way
and the result is funny.

Table 9: Ambiguous texts.

2.3.5 Script precedence vs. script equality

Two scripts are present in joke 9(d). "He" refers to Tom up until the sentence "The bar was stale”
appears. At that point the second and more surprising script emerges in which "He" is "John".
Attardo and Raskin claim that the punchline of a joke “triggers the switch from the one script to
the other by making the hearer backtrack and realize that a different interpretation was possible
from the very beginning” [AR91, 308]. In fact Giora claims that "the reader is made to cancel the
first interpretation upon processing the second marked interpretation [Gio91, 470]. But not all

jokes involve one script canceling another. For example

21

Where do you weigh a whale? At a whale-weigh station.
The pun “does not resolve to a single interpretation” [Bin96, 31]. “The railway station
interpretation does not replace the one about weighing whales; instead, they seem to be
combined into a somewhat nonsensical vision of a place where trains come and go and the
weight of whales is determined” [Bin96, 31]. Both of these dynamics - where one script takes
precedence over another and where multiple scripts coexist without one cancelling the others -

will occur in the jokes created by our joke generator.

2.3.6 Where does the ambiguity occur?

Sometimes the ambiguous phrase or sentence of a joke occurs in the first part of the text and its
second meaning is not discerned until the punchline reveals it (see jokes 7a and 7d). The surprise
comes from having the second meaning (which is not as cbvious as the first one for some reason)
revealed in a subtle way. Surprisingly, the exact opposite dynamic can occur in which the
ambiguity lies in the punchline. For example most Tom Swifties (see Table 11) follow this

format in which the earlier part of the text reveals the duality of meaning of the punchline.

2.4 A Practical Model of Humour

This section describes a practical model of humour that borrows from Attardo and Raskin’s
theory and from the above analysis of the role of ambiguity. This model will be useful for
describing all joke-generating systems discussed in this thesis.

Although Attardo and Raskin assert that they do not have a model for the generation of
jokes, their theory leads naturally to the process shown in Figure 2 in which their parameters

come into play.

2.4.1 Choose a Narrative Strategy

As Attardo and Raskin point out, the context in which a joke is being created must be taken into
account. For instance it will determine which of the parameters is the first to be instantiated. For
example, "one may witness a dumb act” and so the joke’s first instantiated parameter would be
Script Opposition. Or one might "hear another ground-figure reversal story (Logical
Mechanism), find oneself in a car wash (Situation), hear a Polish joke (Target), participate in a
riddle contest (Narrative Strategy), or hear a joke phrased in a certain way and be reminded of
another one similar to it (Language) ... Virtually any combination of [the parameters] may be
present in a situation and cause the production of a joke by calling for the appropriate choices

pertaining to the absent [parameters]” [AR91, 326]. Thus the first step in the generation will vary

Choose a Narrative Strategy|

Construct Schemata
(Script Opposition
and Logical
Mechanism)
Choose an appropriate

template for the schema

(Language)

L

Find Situations

Figure 2: A sequence of steps for artificially generating jokes.
given the context in which a joke is constructed. We, along with previous researchers, have
found that choosing the narrative strategy before all the other parameters simplifies the

generation process because we have to select what kinds of humour are realistic to compute right

23

now given that current computers are not thinking machines. Also, this thesis is more interested
in the logical mechanisms of jokes (what makes texts funny) than the different ways the ideas in
a joke can be expressed. And finally, narrative strategies are often cultural (e.g. knock-knock or
elephant jokes) and hence are inaccessible to machines so they are chosen at the beginning of the

generation process.

2.4.2 Construct Schemata

Once a narrative strategy has been selected, the next step in our model for generating a joke is to

construct a schema like the kind described by Binsted. Following Binsted, we use the idea of a

Characteristic!

Characteristic Characteristic

Homophone2

Homophone

Identity

+ +

Wordl Word2

Homophone

¥

woolly jumper_1

woolly_jumper

Figure 4: An instantiated schema which can yield the following riddle: What do you get when
You cross a sheep and a kangaroo? A woolly jumper.

24

"schema” to represent the underlying mechanism of a riddle. Figure 3 shows an example schema
which builds a riddle based on a noun phrase in which the second word has a homonym. Then a
phrase is built based on this homonymous meaning and the original meaning of the phrase as in
Table 10(a). Texts 10(b) and 10(c) are examples of jokes created by different schema.

Binsted’s idea of a schema encapsulates Attardo and Raskin’s notions of logical mechanism
and script opposition (Section 2.1). The types of schemata which researchers like Lessard and
Levison and Binsted develop, employ what Attardo and Raskin would consider "the most trivial
logical mechanism, a kind of default” : “the juxtaposition of two different situations determined
by the ambiguity or homonymy in [the] pun" [AR91, 306]. Similarly, the logical mechanism of
this thesis’s pun generator is also homonymy. The two (or more) meanings the homonym

accidentally brings together are the opposing scripts.

a | "What is green and bounces?” "A
spring cabbage”.

The first word in a noun phrase is the
homonym.

b | "Where do hamburgers like 10
dance?"” "At a meat ball".

The second word in the noun phrase is the
homonym. (a) and (b) have different
schemata.

c | "What’s the difference between a
pretty glove and a silent cat”. "One'’s
a cute mitten, the other'’s a mute
kitten”.

A schema that uses metathesis as the basis
for the pun.

d | "What do you call a sheep that
leaps?” "A woolly jumper”,

Puns (d) and (e) share the same template
but use different schemata.

e | "What do you call a hairy beast that
swims?" "A weir-wolf".

f | "What do you get when you cross a
sheep and a kangaroo". "A woolly
Jjumper”.

Puns (d) and (f) share the same schema but
use different templates.

Table 10: Examples of Schemata and Templates [Bin96] The ‘“‘schema” describes
the essence of a pun - its precise lexical structure. The template is the frame in
which this lexical structure is inserted.

2.4.3 Choose a Template

When a narrative strategy has been selected and a schema has been fully instantiated, a template
is designed. Templates correspond to Attardo and Raskin’s Narrative Strategy and Language
parameters. A template consists of fixed text and blank spots or “slots” where words or phrases

generated by the schema can be inserted [Bin96, 68]. For instance the template for joke 10(f) is

What do you get when you cross [appropriate text fragment gleaned from schema] with

[text fragment from schema]? [the constructed noun phrase].

The words in bold are the canned text and the brackets [] represent the slots. For example puns
10(d) and (e) have different schemata but share the same template ("What do you call a ... that
S N
A single schema can produce numerous puns if different templates are used. For example let
us say we have the following entries in a lexicon (the notation here is from {BR94, 14]).
class jumper_2
*act_verb: leap

$describes_all: kangaroo

class woolly
*$describes_all: sheep

One template builds a riddle from the relations marked by * while another is required to
construct a riddle from relations like those marked with the $, yielding 10(d) and 10(f) for
example. The same schema is at work - a phrase is built based on “woolly” and a homonym of
“jumper” - but different relations between lexemes were chosen and hence two different
templates have to be used to express the joke. In some cases a lexicon will have the entries
needed for some templates but not others. The joke generator developed for this thesis will use

various templates.

26

2.4.4 Find Targets and Situation

The final stage in generating a joke is to insert what A&R call the “situation” into the
template. We propose, following Lessard and Levison, and Binsted, that this final step
can be automated. The computer will search a network of words or database in order to
instantiate the schema. Some of the words gleaned from the network will represent the
"situation” of the joke (the actions, participants, and objects described in the text). In the
example of the instantiated schema of Figure 5, no target appears but the situation is the

following:

actions: bouncing
objects: something green, a spring-cabbage.

bounce
act_verb \
spring
Homophone
spring cabbage
spring cabbage

Figure 5: An instantiated schema which can yield the following
riddle: What is green and bounces? A spring cabbage.

The joke-generators created by Levison and Lessard (sections 3.1 and 3.2), Binsted (section 3.3)
and the one created and described by this thesis (chapter 4) - do not include a target parameter.
The exclusion of the target parameter does not contradict Attardo and Raskin's theory of humour,
however, because it is an optional parameter in their model (the only optional parameter in fact).

One could argue that in the example in Figure S, the target of the joke is the "spring-cabbage"” but

27

Attardo and Raskin define the target as "an individual or group” possessing some kind of
stereotype (for example "dumbness") for which they are mocked. Thus subjects of puns such as
"spring-cabbages”, which are neither human nor enjoy any kind of stigma we know of, will be

regarded as situational props by our model.

28

Chapter 3

Previous Automated Joke Algorithms

Researchers have successfully created systems that generate certain kinds of simple verbal jokes.
Lessard and Levison examined Tom Swifties and riddles and discovered that many of them "can
be seen as the product of a clearly defined set of rules such that once the model is provided, an
indefinitely large number of (them) may be created” [LL93]. They implemented these rules using
VINCI, a natural language generator which they developed. Kim Binsted also analyzed riddies
and modeled ones that “share deep traits" (34) and "semantic patterns” (35). She then wrote a
program that generates a specific class of them. Sections 3.2 through 3.4 explain these models

they constructed and how they implemented them.

3.1 Lessard and Levison’s model of Tom Swifties

Levison and Lessard have modeled a class of Tom Swifties. Examples of this class of pun are in
Table 11[LL97]. Every Tom Swifty has a central element that Lessard and Levison call the
“pivot” around which the joke turns. For example in joke 11a, the pivot is "crabbily”. Within that
word is another word ("crab™) called the base which is semantically related (in this case, by
hyponymy) to an earlier word or phrase in the sentence called the target ("seafood”). From Table
11 (a-e) we see that the pivot of a Tom Swifty can be a verb, a noun phrase, an adverb or an
adjective. A relationship of the base with the pivot and the pivot with the target are the minimal
requirements for a Tom Swifty. Some examples have yet another relation however, between the
pivot and an earlier part of the sentence such as the relation between the pivot “‘crabbily” and the

phrase "I hate”.

29

“I hate seafood” Tom said crabbily.

b | "We steal things together” Tom corroborated. the pivot is a verb.
¢ | "I've only enough carpet for the hall and landing"” | the pivot is a noun phrase (in a prepositional
said Tom with a blank stare. phrase).
d | "I love the novels of D.H. Lawrence” said Tom the pivot is an adverb.
chattily.
e | "I dropped the toothpaste” said Tom, crestfallen. | the pivot is an adjective.
f | "I wish I were raller” Tom said longingly. synonyms: tall/long; synonyms: longing/wishing.
g | "I wish I were taller” Tom said shortly. antonyms: tall/short.
h | “f love seafood” Tom said shellfishly. hyponyms: shellfish is a subset of seafood.
substring similarity: shellfish and selfish.
i | "I hate pizza” Tom said crustily. meronyms: the relationship between parts and
wholes.
j "I am getting drunk” said Tom wryly. instrument: a means of becoming drunk is rye.
k | "I hate chemistry” Tom said acidly. domain: acid is an entity associated with
chemistry.
I | "There's oo much tabasco in this chili” Tom said | quality: tabasco sauce has the quality that it is hot.
hotly.
m | “It's a unit of electric current” said Tom amply. paraphrase: a unit of electric current is an amp.

Table 11: Examples of Tom Swifties.

Lessard and Levison’s implementation of Tom Swifties can be described in terms of

schemata and templates. Although they never refer to their algorithm in these terms, their design

for generating jokes can be represented as the schema of Figure 6. The template will be

"I

" said Tom

Lessard and Levison propose a hierarchy of Tom Swifties ranging from verbal humour to

situational humour [LL97]. Table 12 shows some of the more complicated Tom Swifties.

3.1.1 Computational generation of Tom Swifties

This model was implemented by Lessard and Levison with their natural language generator

system called VINCI (LL92a}. VINCI consists of

30

Homophone

[base H thcrestofthepivotj

The pivot

Figure 6: The schema for a simple Tom Swifty.

a | "Yes my lobotomy was successful” said Tom the pivot contains multiple bases.
absent-mindedly.

b | "These are the propulsion systems used by NASA | the target is made up of multiple words.
for the moonshots" said Tom apologetically (i.e.

Apollo jet).

¢ | “Whenever I put on my scuba gear [get pins and | both the target and the pivot have muitiple
needles” said Tom divertingly (diver-tingly). components

d | “I had to fire my first mate when she got too the pivot has multiple bases and the link between
heavy for the boat" said Tom excruciatingly (ex, its components and earlier parts of the sentence
crew, she ate). are phonological (based on sound) rather than

onh_ggriphic (written form).

Table 12: Situational Tom Swifties.

e acontext free generator
e a mechanism which can transform, add, delete or move subtrees in the syntax tree
e alexicon containing

e words

e the word categories they belong to (i.e. noun, adjective)

e relations that hold between them such as synonym, hyponym.

In this way an item in the lexicon can point to other items in the lexicon and so a connected

network of words can be created. Let’s say our lexicon looks like this:

31

"crab" |[N|edible. .. |hyperonym: "seafood"; paronym:"crabbily”/ADV]|...
"seafood" [N|edible. ..
*crabbily" |ADV|attitude. .. |base: "crabby"/ADJ;...

Each lexical entry appears on a separate line and has fields delimited by vertical bars. Given this
lexicon, we can express an algorithm as follows:
(1) choose a word (the base) that possesses both a hyperonym and an adverbial paronym in its
lexical entry. (A hyperonym of a word x is the superset to which x belongs. For example, a
hyperonym of "crab" is "seafood"”, of a "cat” is "animal").
(2) generate a sentence with a template that uses both the hyperonym and paronym. (Paronyms
are words derived from the same root that differ in meaning. For example "man", "mannish",
"crab”, "crabbily").

In our example, the base word that fits these criteria is "crab”. It will act as the seed for

generating a pun. In VINCI, the syntax for generating a simple Tom Swifty of this kind is given

in Figure 7 [LL95]. A transformation (a rule which manipulates a syntax tree) called SWIFTY

{Syntax}

{Find a base noun which has both a hyperonym and a paronym in field 13}
BASE = N[edible]/13=hyperonym/13=paronym/ADV
{ Generate a sentence from the base using first its hyperonym, then its paronym}
SWIFTY = TRANSFORMATION
N : PRON V[evaluation, edible.directobj] 1/@ 13:hyperonym

V[said] N[Tom] /@ 13:paronym/ADV;

{ Apply the transformation to the BASE}
ROOT = SWIFTY: BASE

Figure 7. A VINCI grammar for generating a simple Tom Swifty.

expands the syntax tree BASE (which is simply a word in this example) and produces:

(i) apronoun "I"

(ii) a verb of evaluation which takes an edible object as a direct object, such as "hate" or "like"
(iii) the hyperonym of the base ("seafood™)

(iv) the verb "said"

(v) the noun "Tom"

(vi) the adverbial paronym of the base ("crabbily").

32

This grammar produces Tom Swifties such as "I hate seafood"” said Tom crabbily.

.....

generated by the schema.

3.2 Lessard and Levison’s model of riddles

In addition to Tom Swifties, Lessard and Levison also modelled two classes of riddles that use
spelling or word sense ambiguity. These riddles, like Tom Swifties, contain a "central point of
the humorous structure” which they call the “pivot” of the joke [LL93]. This pivot is a pair of
homonyms that are spelled differently. Lessard and Levison’s model generates riddles such as
those listed in Table 13. The first class of riddle, which they call a “syntagmatic homonym
riddle” (examples a and b in Table 13), does not replace a word with its homonym but instead

supplies both words in the punchline.

“"What are groups of sailors on an ocean pleasure
trip?" "Cruise crews",

syntagmatic homonym riddle that uses spelling
ambiguity.

"What does the man who looks at oceans do all
day?" "Sees seas".

syntagmatic homonym riddle that uses spelling
ambiguity.

"What has a mouth and does not speak?" “"A
river”.

paradigmatic homonym riddle that uses word-
sense ambiguity.

Table 13: Syntagmatic and paradigmatic homonym riddles generated by Lessard and Levison.

The second class of riddles modelled by Levison and Lessard are what they call

“paradigmatic homonym” riddles such as 13(c) is an example. The homonym in this kind of
riddle has specific characteristics such as:

e it is part of something (an animate being's body)
e it has a role (eating or speaking)

e its second meaning is an entity which is part of something ("mouth of a river").

33

3.2.1 Computational generation of this class of riddles

Lessard and Levison used VINCI to generate both syntagmatic and paradigmatic homonyms.
Consider, for example, the paradigmatic homonym riddles. In their table entry for that noun, the
13th field must contain a pointer to a holonym (a larger entity which encompasses some part) and
a pointer to a typical role filled by the noun. In VINCI, the syntax for generating the

paradigmatic homonym riddles is provided in Figure 8 [LL93].

ROOT= N[bodypart}/13=homn/13=rol
RIDDLE = TRANSFORMATION
N: FRAME(has] 1/@13:homn FRAME[cant] 1/@ 13:rol PUNCT[question];

SOLUTION = TRANSFORMATION
N: DET[indef] 1/@13:homn/@ 13:hol;

QUESTION = RIDDLE:ROOT
ANSWER = SOLUTIGN:ROOT

Figure 8: The VINCI grammar for generating a class of paradigmatic homonym riddles. The tree
ROOT selects a noun like “mouth” which is a homonym and represents a body part. The
transformation RIDDLE creates a FRAME or template of the form (“What has a” ...<homonym> “but
can’t” <role played by homonym>. The solution is an indefinite article followed by the holonym of the
homonym. Thus riddles such as 13(c) can be generated from this syntax.

3.3 Binsted’s model of a class of riddles

Kim Binsted also models simple riddles - claiming that "it would be over-ambitious to tackle
sophisticated adult humour at this stage" [BR94, 4] - and implements them in a program. The
riddles generated by her program have been deemed by human judges to be "of comparable
quality to those in general circulation among school children” [BR94, 1].

She concentrates on jokes which use word-level ambiguity (2.3.1) and the strategy of
metathesis. These puns are built on common noun-phrases and substitute a word in that noun
phrase for a homonym. Her program makes use of schemata and templates (described in Section

2.4.2) and a lexicon.

3.3.1 Computational generation of this class of riddles
The lexicon
Binsted’s lexicon contains semantic and syntactic information about words and noun phrases.
(The common phrases Binsted's prograrm makes use of are just noun phrases). Each entry hasa
unique identifying symbol or “lexeme” and a number of “slots” associated with it. For example a
homonym like “habit” must have two lexemes or unique identifiers such as “habit_1", “habit_2"
in order to distinguish the two meanings of the word. The slots contain syntactic information and
semantic relations for words in the lexicon. Table 14 lists the semantic relations Binsted's
generator requires to construct her class of riddles [Bin96, 76]. It is important to note that the
information contained in the lexicon is "general and neutral - the joke-generating power lies
elsewhere in the program, particularly in the schemata and templates, and the ties between them"
(BR94, 13].

Each lexeme is a node in a network. The values in the semantic slots are often other lexemes
but they sometimes contain chunks of text in near-surface form (a word, phrase, or sentence in

grammatical, understandable English but is not in perfect surface form (e.g. it may not have

SLOT Used With Allowed Values

CLASS np, noun The immediate superclass of the lexeme. e.g. (lemon, fruit)

SPEC_IS np, noun The class to which the entered lexeme belongs. (The class
defines the entered lexeme reasonably precisely). e_g.
(lemon, citrus).

IS np, noun A lexeme that typically describes the entered iexeme. e.g.
(lemon, sour).

HAS np, noun ¢.g- (lemon, pips)

ACT_VERB np, noun A verb lexeme. Something the thing typically does. e.g.
(chef, cook)

ACT_OBJ np, noun The near-surface form of the object of the ACT_VERB
value. e.g. (chef, food). (A chef cooks food)

INACT_VERB np, noun A verb lexeme. Something you typically do to the thing.e.g.
(horse, ride)

35

LOCATION np, noun The near-surface form of its typical location. e.g. (horse, "in
a pasture”).

USED_TO np, noun A verb lexeme. Something the thing is typically used to do.
e.g. (spatula, flip).

USED_TO_OBJ np, noun The near-surface form of the object of the USED_TO value.
e.g. (spatula, pancakes). (A spatula flips pancakes). ‘

SYNONYM np, noun, adj A lexeme of the same category as the entered lexeme. e.g.
(pillow,cushion)

DESCRIBES_ALL noun, adj A lexeme which refers to a thing or class of things which
can always be described by the entered lexeme. e.g. (slimy,
worm).

Table 14: Lexical relations used to generate a class of riddles. Schemata make use of different relations
so not all the slots need to be filled.

capitals at the beginning of sentences, etc)). For example, the lexeme "horse” in Table 14 has the

phrase "in a pasture” for its LOCATION entry. Binsted uses phrases "so that they can be put

directly into a template without further syntactic manipulation”. She justifies this because her

dissertation is about generating jokes, and not about "complex (but uninteresting) syntactic

generation" [BR94, 13].

Thus Binsted uses schemata, templates and a lexicon to generate jokes. She claims,
apparently unaware of Lessard and Levison’s work, that her program differs significantly from
other attempts to computationally generate humour in three ways:

1. Its lexicon is humour-independent. The algorithms are what create the joke, not the lexicon.
In other words the joke is not “lexicalized” [LL93].

2. Another program[AR94] generates riddles that are similar merely in surface form. This
program generates riddles that are similar on a “strategic and structural level” [BR94, 12].

3. Itis an implementation based on a model of riddles. If the results are poor, the model is
probably wrong.

Lessard and Levison have also done these things. This thesis will also make use of schemata and
templates and a lexicon and will use Lessard and Levison's natural language generator VINCI to

generate a class of jokes.

36

3.4 What components of the practical model (Section 2.4) are performed by
the computer in previous joke-generators?

In the automatic generators of jokes that we discuss in chapters 3 and 4, the narrative strategy has
been chosen by the creator of the generator. The appropriate schemata for a subset of that kind of
joke have been programmed and appropriate templates for each schema have been written by
humans. The computer then executes its algorithms and performs the last step of our practical
model (Section 2.4) when it searches the database. Therefore the computer has been equipped to
perform step 4 of the process represented in Figure 2 (Section 2.4). Future research might change
the context in which a joke is to be created and thus have the machine do more. For example, let
us say the computer is asked to make a joke about apples. The situation of the joke has been
provided. More complicated kinds of logical mechanism and script opposition which do not rely

on simple homonymy would have to be implemented.

37

Chapter 4

Modelling and Generating HCPPs

In this chapter we describe a detailed and formal linguistic model for a certain class of joke and
demonstrate automated generation of jokes using it. This thesis concentrates on jokes which
make use of low-level ambiguity, specifically word sense and spelling ambiguity. The puns use
common phrases that contain a homonym. Puns with homographs are not modelled because they
are not successful oral jokes. To keep the topic focused and manageable, the jokes do not make
use of substring level ambiguity. Occasionally puns that contain high-level ambiguities result
from lucky accidents. Jokes with high-level ambiguities are not modelled because, as discussed
in Section 2.2.1 this would require a computer with common sense and world knowledge.
Specifically, we have chosen to model puns which make use of idioms (e.g. "kick the habit",
"pass the buck”, "jump ship") or commonly connected words ("knead the dough", "serial killer",
“tip the waiter") all of which we will refer to as “common phrases”. In the future, such common
phrases could be detected by a statistical program that surveys common literature. An example of

this kind of pun is:

John ate a loonie. Now he’s passing the buck.

4.1 Why use common phrases?
Puns can be written without common phrases but we make use of them because they simplify the
generation of sentences'. When a common phrase is used, one of the meanings of the homonym

is already "built into" i.e. captured and expressed by the cliched phrase. Thus only one sentence

38

articulating the other meaning of this word in the common phrase needs to be generated from
scratch. Without a common phrase we would have to generate two entire sentences to express the

meanings of both the word and its homonym.

4.2 Components of HCPPs

HCPPs can be formally defined in terms of a “target phrase”, a “base” and a “pivot”, in a
manner very similar to Lessard and Levison’s model for Tom Swifties. For example
compare the following Tom Swifty and HCPP:

a. "We've struck oil"” Tom said crudely.
b. John is violent. He is raising (razing) cattle.

The simplified schema models in Figure 9 reveal that both kinds of pun obey a similar
"grammar”. As we have seen from Lessard and Levison's work, simple Tom Swifties
contain a word called the pivot (the word "crudely” in example i) and the pivot in turn
contains a word within it ("crude"), the “base” which is a homonym. In the HCPP, the
common phrase "raising cattle” can be considered the pivot. Like the Tom Swifty, this
pivot unit contains a base - an element which enjoys any kind of relation (meronymy,
hyponymy, antonymy etc.) with an earlier part of the sentence. The base’s meaning
differs from the pivot’s and hence the pivot’s meaning is challenged and subverted. In
our example, the base is the word "raising” whose homophonous meaning "razing"
(defined as "completely destroying") is reinforced by the target phrase "John is violent".
(Note: the word "raising" actually has two homonyms: "raising” as in lifting up and
"razing" as in destroying. If the other homonym were used, the pun "John is lifting up
cows. He raises cattle” could also be constructed). Thus the Tom Swifty and HCPP

schemas are similar but their narrative strategies and templates are very different.

! For example: "I'm bored" yawned the piece of wocd with a hole in it. Three meanings of the homophone
bored are used here: bored (unchallenged), board (piece of wood), bored(drilled).

Simplified Schema for Tom Swifties

characteristic

describes

homophone

Gy

39

Simplified Schema for HCPP

homophone

T

raising) cattle

Figure 9: The similarity between Tom Swifties and HCPPs. The pivots appear in the boxes at the

bottom, the bases in circles

4.3 Levels of complexity of HCPPs

The minimum requirement for generating homonym puns is a semantic relation between

a. multiple reverberations with parts or all of
the common phrase:

John stores his money in a matiress. He's
making a down payment.

b. reverberations involving parts of the common
phrase and the meaning of the whole common
hrase:

John stores his money in a manress so he has
something to fall back on.

c. reverberations with a substring or substrings
of a word in the common phrase:

John's girlfriend fell asleep while watching the
Northern lights. He asked: "Does the aurora
bore you Alice?”

d. reverberations involving more than one
common phrase per joke:

"I can’t believe a man of your calibre would do

sucha thing! " said Tom shaoriug aﬁ his mouth.

Table 15: Some of the different kinds of bases in HCPPs.

a homonym of the base word and a word or phrase in the target sentence. Table 15 groups some

possible HCPPs according to the kinds of relations that occur between the pivot and the target

sentence.

4.4 Focusing on a subclass of homonym pun

This thesis will focus on puns that belong to categories 15(a) and (b). In order to render the
algorithmic modelling clear and comprehensive, we further refine the focus to puns with the
following characteristics:

e Most of the puns will consist of two sentences or a sentence and a sentence
fragment. The pivot sentence will act as the punchline of the joke and so will always
appear after the target sentence as in joke 2a. The sentences could be reversed to "John
is passing the buck. He ate a loonie" but that would not be as satisfying. The sentence
that ends with the common phrase resolves the built-up tension better.

e The pivot sentence/sentence fragment will contain a common phrase that in tumn
contains a homonym.

e The target sentence will always make some kind of reference to the homonym in
the pivot sentence.

e "John" or "Joan" or a career person (such as a lawyer, nun, fisherman) or some
kind of animal will be the subject of the first sentence and the pronoun for that entity
("He", "She") will be the subject of the second sentence.

e We will concentrate on common phrases with the syntaxes listed in Table 16.

The range of puns that meet these criteria is vast and spreads across both verbal and non-
verbal types of humour. Table 17 illustrates this range by investigating part of the
hierarchy of homonym puns that can emerge from a single common phrase "x kicks the
habit".

Thus, jokes like a - d can be generated by our system but e and f cannot because this
kind of complex cognition makes them too difficult. Although all of these puns would
probably be classified as examples of verbal jokes because of their use of word-level
ambiguity, puns e and f go beyond simple linguistic play and require reason and

knowledge.

Verb <optional article> noun where the verb has a "tip the waiter", "jump

homonym that is also a verb. ship"

verb phrase <optional article> noun where the noun | "kick the habit", "pour out

has a homonym that is also a noun. his soul"

verb <optional article> noun where the verb and the | "pass the buck", "kneads

noun both have verb and noun homonyms respectively. | dough™

adjective noun where noun has a homonym that is “broken heart”, ""communist

also a noun. plot"

noun#l noun#2 (compound noun) where noun#l has a | "soul mate", 'night school"

homonym which is also a noun.

adjective noun where adjective has a noun homonym. | "serial killer", "novel idea"
Table 16: Some of the different syntaxes of the conumon phrases. Because we are

performing linguistic transformations and generating sentences, it is useful to organize

puns in terms of the syntax of the common phrase being used.

a John attacks nun’s clothes. He kicks
the habit.

A simple translation pun that uses phrase type a.
The direct object of the common phrase is a
homonym so we find a synonym of its
homophonous meaning and use a synonym or
hyponym of the verb to create the target sentence.

b John attacks nuns. He kicks the habit.

This is an improvement of (a). To generate this pun,
however, the program would require a semantic net
extensive enough to know that a habit is worn by a
nun and that clothing (especially uniforms or
clothing associated with a vocation) can be
symbolic of a person.

c The nun gave up smoking. She kicked
the habit.

An example of an actual bad habit improves the pun
by making it more subtle than pun (d). The
improvement in (c) makes the pun harder to
implement, however, because the database would
need to have examples of bad habits. The
juxtaposition of incongruities expressed in the pun -
the idea of a nun smoking or having any kind of bad
habit - is a comical one that adds to the humour of
the joke but enabling the system to create this kind
of opposition is very difficuit - a sophisticated
knowledge base and/or inferencing mechanism
would be required. Interestingly, pun (c) was
generated by our program, but the incongruity of a
devoutly religious person smoking is an accidental
bonus unplanned by the algorithm which yielded
this joke. In other words, the incongruity in this pun
will not necessarily appear in puns derived from
other common phrases. In this example, it just so
happens that the word “habit” and its homonym
bring together two concepts (a nun and smoking)
that are more opposed to each other than ones
normally yielded by homonyms (for example, “air”
and “heir™).

41

d The nun gave up a bad tendency. She

kicked the habit.
e John used to attack nuns. But now he | This pun is ironic because John's giving up a
has kicked the habit. violent tendency is described in violent terms and

suggests that maybe John did not give up his violent
predilections after all. This kind of irony requires
complex cognition which computers currently do
not possess.

f The nun has given up her orders. She
kicked the habit.

In this pun, the meaning of the common phrase
resonates with the idea in the target sentence that the
nun has given up something. In fact, because of this,
it makes a disrespectful equation of the nun’s
devotion to God with an addictive tendency that
should be shaken off. Giving up her vocation is
equated with giving up some implicitly bad and
trifling tendency. Also, the literal interpretation of
“kick” and the homonym of “habit” (nun’s clothes)
taken together, form a symbol of the nun renouncing
her religious orders. Literally “kicking” something
often means showing that thing disrespect (unless it
is a soccer ball) and so there is the suggestion here
that the nun does not respect her former calling. The
computer would therefore need to possess
knowledge about the symbolism associated with an
act such as kicking, and would have to be
sophisticated enough to understand the following
nuance: in this pun the habit no longer represents
the nun as it did in example (b) but instead
symbolizes her orders. This linking of things - habit
and religious calling, habit and nun - are insights
which the computer would have to possess. In other
words, the computer would have to possess
encyclopedic knowledge about the world.

Table 17: Part of a range of homophone puns that can emerge from a single common
phrase "x kicks the habit".

4.5 Required Lexical Database Elements

A number of different algorithms have been written to generate HCPP’s because common

42

phrases with different syntaxes require different algorithms. All of these algorithms make use of

a lexicon which contains certain semantic relations between nouns, noun phrases, verbs, verb

phrases and adjectives. Table 18 lists the semantic relations the generator uses to construct

HCPPs. A subclass of an HCPP will make use of a certain set of relations while another subclass

will require a different set. Thus not all the lexical slots have to be filled for a particular common

43

SLOT Used With Allowed Values
class np, noun The immediate superclass to which the entered lexeme
belongs. e.g. (deer, animal)
why_x verb The answer to the question “Why would x verb y?” and the
answer only involves x. e.g. (raze, “x is violent™)
why_xy verb The answer to the question “Why would x verb y?” and the
answer involves both x and y. e.g. (raze, “x dislikes y’)
homonym noun, verb, e.g. (heart, hart), (cure, cure), (serial, cereal)
adjective
synonym np, noun, vp, verb, | e.g. (cattle, cows)
adjective
per_or_animal noun, np, verb, vp | A person or animal associated with this lexeme. e.g. (cattle,
farmer).
inact_verb np, noun A verb lexeme. Something you typically do to the thing. e.g.
(deer, hunt), (mess, made)
approp_adj (adjective, noun) An analogous adjective for the given class. e.g. ((broken,
pair animal), injured)
prep_assoc np, noun A preposition associated with the noun lexeme. e.g. (tent,

in), (wharf, on)

Table 18: Lexical relations used to generate a class of riddles.

phrase (and the words that make it up) in order for a joke to be generated. Figure 10

demonstrates which relations are relevant to which syntactic categories of words.

4.6 The Schemata

Figures 11 through 21 demonstrate the various schemata for HCPPs. The syntax of the word

phrase acted upon by the schema is shown in the topmost box. The “(h)”” symbol appearing after

a word category indicates that the word is a homonym. For example, Figure 11 shows Schema #1

which generates puns from verb-noun phrases in which the verb is 2 homonym.

why_xy

Lcommon phrase]

noun or
noun phrase

~< L5

| verb or verb

Figure 10: The relations required for different word or phrase categories. Most schemas
make use of only a handful of relations. In other words, not all the relations are required
to generate a particular kind of joke.

verb(h) - noun
Schema #1 «x s violent”
noun
modifier
why_x
56mze”
verb B
homophone
“raise” “ e
verb A |¢ ﬂ noun
object
vp
common
phrase
“raise caftle”

Template for Schema #1
“The " <nounA> “is” <noun modifier> *."
“He * <common phrase> *“."

Figuare 11: The why_x relation asks the question: “Why would x raze y”. A possible answer for this
relation might be “x is violent”. The answer for this relation involves only a description of x and does not
involve y. Examples of jokes produced by this schema is: “John is violent. He raises cattle”. “Jobn is
compassionate. He cures the meat”. “John is perverted. He flashes his lights”.

45

verb(h) - noun

Schema #2
“x dislikes y”
I verb C
why_xy
“cows”
“raze” I noun B
verb B
homophone
“raise” “caitle”
verb A noun
l object
vp
common
phrase
“raise cattle”

Template for Schema #2

“John ” <nounA> <verb C> <noun B>*“.”
“He * <common phrase> *“.”

Figure 12: This schema is almost identical to schema #1 except the why_xy relation is used instead of the
why_x relation and a synonym of the noun object is required. The kinds of jokes produced by this
schema and template are: “John dislikes cows. He raises cattle”. “John pities the animal flesh. He cures
the meat”. “John is attracted to electromagnetic radiation. He flashes his lights”.

verb(h) - noun
Schema #3
“destroy” add “ed” to end “destroyed”
I verb C.. ﬂ adverb
= | ‘
synonym
.“ ” “cows”
raze
verb B noun B
sylionym
“mix1' I‘catu e"
verb A noun A
vp
common
phrase
“raise cattle”
Template for Schema #3

“The ” <noun B> <aux> <adverb >“.”
“John" <common phrase> “.”

Figure 13: The kinds of jokes produced by this schema and template are: “The cows are destroyed. John
raises cattle” or “The animal flesh is healed. John cures the meat”.

47

verb(h) - noun

Schema #4 “cartoonist”™

noun B

noun
verb A phrase

|

vP
common

phrase
“draw a blank”

Template for Schema #4

*“The " <noun B> <verbphrase> *.”
“She * <common phrase> *.”

Figure 14: The common phrase has a verb in it which is a homophone. Some examples are: ‘“The
cartoonist cannot remember. She draws a blank”. “The pervert is signaling. He flashes his lights “The
cook overextended himself. He strained himself”. Using the per_or_animal link with verbs is often
effective because what a person does often says a lot about who that person is. Using per_or_animal with
objects is probably less successful, however, because a person interacts with many objects in this worid
which do not have a lot to say about her. Of course some objects are related to a person, some are even
symbolic - for example a doctor and her scalpel, 3 mail carrier and letters. But for the most part, it is
probably safer to say that the verb being done by a subject in a sentence is more closely related to that
subject than the object which the subject is interacting with.

verb - nounth)

Schema #5 “nun’s clothing”
nounC
M' t"
verbB nounB

T ,

verbA nounA
T“kick" & <habit”
vp common
phrase
*kick the habit™

Template for Schema #5

-

“Joan " <verbB> <moun A
“She ** <common phrase> “.”

Figure 15: Simple translation puns. Some examples are: “Joan boots the nun’s clothing. She kicks the
habit”. “Joan owns a signal. She has flare”. “John created a hard candy. He made a mint”. “Joan
handed over a compartment. She gave berth”.

50

1. nounc¢h)-noun
2. adj(h)-noun where hom(adj)->noun

Schema #6
“prisoner”
noun B
per_or_animal
“make a call”
verb
phrase
“phone”
noun
*paraphrm T
“‘use”
[verb A} - cout:r.;\on
inact_verb
phrase
“cell phone”
Template for Schema #6

“The " <noun B> <verb B> “a” <nioun C>*."
“She * <verb A> <a> <common phrase> “.”

Figure 16: The common phrase does not contain a verb. One of the words in it (an adjective or noun) is a homophone.
Some examples are: “The prisoner makes a call. He uses a cell phone” or “The electrician reads a lot. She keeps up with
current events”. *If nounA is already a career person or an animal then the value for the relation per_or_animal is just
a synonym of nounA.

51

1. noun(h)-noun
2. adj(h)-noun where hom(adj)->noun

Schema #6b “diver”
noun B
per_or_animal
noun A[“coral”
“belong 10"
homonym
inact_verb
“choml“ “organiuﬁon"
noun or . “group
adjective noun 'l nounC
synonym
np
| common
phrase
Template for Schema #6b

*“The"<nounB> <verb A> {a/an} <nounC> “.”
“A** <np common phrase> *.”

Figure 17: The common phrase is a noun phrase (either an adj-noun or 2 compound noun). Either the adjective or the
noun is a homophone. An example is: ‘“The diver belongs to an organization. A choral group”. If nounA is already a
person or an animal then the value for the relation per_or_animal is just a synonym of nounA.

1. noun#1(h)-noun#2 where hom(noun#l) is a place or container.
2. adj(h)-noun where hom(adj)->noun and is a place or container.

Schema #7
“on” “wharf™”
preposition noun D
ht——
prep_:
ym
‘ , “force™
noun C (must noun E
be a location |
or a container) synonym
homophone
“pressure” “exert”
noun A or noun B ‘_ ' verb
adjective A
inact_verb
op
common
phrase
“peer pressure”

Template for Schema #7

“John” <verb> <noun E> <preposition> “the” <noun D>"."
“{AfAn} <common phrase> “.”

Figure 18: The kinds of jokes produced by this schema and template are: “John exerts force on the
wharf. Peer pressure” or “John sees the person in a burial spot. A grave man”.

52

L. noun#l(h)-noun#2 where noun#?2 is a location or container.
2. adj(h)-noun where hom(adj)->noun and that noun is a location or container.

Schema #8 “create”
I verb
inact_verb “in”
preposition
noun D
*“disorder”
prep_:
synonym 7“mom"
noun C noun E
homophone
“mess” “hall”
noun A or noun B (must
adjective be a location
ora
np container)
common
phrase
“mess tent”

Template for Schema #8

“John" <verb> <noun D> <preposition> <noun E>*."
{A/An} <common phrase> “.”

Figure 19: The kinds of jokes produced by this schema and template are: “John creates disorder in the
room. A mess hall” or “John reads about a medieval warrior at the place of learning. A knight school”
or “John combs the horse’s hair on the pole. A main mast”,

53

adj(h)-noun where hom(adj)->noun

Schema #9
. R . Aldxr"
animal class noun C
noun D r
.
synonym
“injured” “hart” “see”
adjective B Q———-ﬁappmp_adj noun B ' verb
T inact_verb
homonym
“broken” “heart”
adjective A ‘—— ﬂ noun A
np
common
phrase
“broken heart™
Template for Schema #9

“John™ <verb> {“a/an”}<adjective B> <noun C>*.”
{*“Iv/He/She”}"is” (“a/an™ } <common phrase> “."

Figure 20: The kinds of jokes produced by this schema and template are: “John sees an injured deer. It is a broken
heart”. If the adjective is appropriate as it is then a synonym of it is used. For example, “John is a warm descendant.
He is a hot heir”.

verb(h) -> noun
Schema #10
. . If the attributes of nounB
horse and verbB do not clash then
nounB the sentence is generated.
Lnonym
“nag” “scold™
nounA verbB
>
{homophone
verbA | nag”
Template for Schema #10
“John” <verbB> “the” <nounB>.
“He” <verbA> “it” “.”

Figure 21: The kinds of jokes produced by this schema and tempiate are: “John scolds the
horse. He nags it”. “John sells the bird. He hawks it”. Attributes such as animate,
inanimate, tangible, intangible are given to nouns and verbs in order to procure some
semantic coherence between them. For instance , with the given attributes, some absurdities
such as “John drinks the distance. He laps it up” will not be allowed because “distance” is
an intangible and the verb ‘“drink” requires a tangible. But the list of attributes is
incomplete so many semantic clashes can still occur.

56

Chapter S

Implementation

This chapter describes a practical implementation of three of the schemata introduced in Chapter
4. A large portion of the work was the preparation of the lexical database from which the jokes
were drawn. Section 5.1 describes that process and Section 5.2 reviews briefly how the schemata

were implemented in VINCL

5.1 Populating the Lexical Database

The whole procedure for populating the lexicon could be completely automated if a sophisticated
semantic network of words and their relations were to exist - the kind of knowledge base which
will ultimately need to be constructed for truly automated natural language generation and
understanding. This knowledge base does not yet exist, however. Indeed one of the goals of this
thesis is to discover some of the information which would need to be available to allow
comprehensive artificial generation and understanding of natural language. The steps in the
procedure (see Figure 25) have been done manually for this thesis because the needed digital
lexical resources were not available.

A lexicon is “a set of records (lexical entries) which describe the words of the language, the
word categories they belong to, and a variety of other ... information used in the generation
process” [LLL96]. Figure 21 demonstrates an example of a part of a lexicon and shows that each
line in it holds information about a single word or phrase. The information includes: the lexeme

of the word, its category, its attributes, and various relations.

57

5.1.1 The reserved fields

A VINCI lexicon consists of a collection of records, each of which is a sequence of fields. The
first six fields of every lexical entry are reserved for certain kinds of information while
subsequent fields can be defined in any way the user chooses. The six reserved fields are shown

in Figure 22 and are listed here:

Field 1 holds the lexeme of the word - i.e. a unique identifier for each word or phrase.
Field 2 contains the category of the word - i.e. whether it is a noun, adjective, verb,
determiner or common phrase.

e Field 3 holds attributes or characteristics of the word. For example, in Figure 2, “trunk” (as
in car compartment) has the attribute ‘location’ and the class “Number” which contains the
values “singular” and “plural”. This class allows each lexical item to be either singular or
plural - morphology rules then produce the appropriate forms, with or without “-s”, as
required.

e Field 4 can be used to indicate the frequency with which a user would like VINCI to include
that word in a sentence. This feature was not necessary for the joke generator, however, so it
was left blank.

e Field 5 holds information about how to make the word plural (if the word is a noun) or how
to make it agree with third person subjects (if the word is a verb).

e Field 6 holds rules for a second morphology pass. This allows leaves in the tree to be
compared to each other and to be transformed if need be. For example if the words “a” and
“ox” are next to each other in a sentence, then “a” is changed to “an” because the word
following it starts with a vowel.

“cell_phone”ICPI3I4#11$1317ICPpt1:"b”/BLANKICPpt2:"b"/BLANKICPpt3:"b"/BLANKICPpt4:"cell"/ADJICPpt5:
"b”/BLANK ICPpt6:space”/Nisyn:"wireless phone”/Phrasel

“cell_1"lADJINumberi4!$2I$ 13"cell”"l homophone:“cell _2"|

“cell_2"ININumber; locationi$2i$13/"trunk”’| homophone:”cell_1"Isyn:"prison"|1 Olprep_assoc:"in"112i
“phone”ININumberi4|$2i$131"phone”l Isyn: “telephone™ 9linact_verb: “use™11112 |
“use”VINumberl4{$ 316l use"lsyn:"employ”/VI

Figure 22: Example records from a VINCI lexicon. In this Figure, an integer indicating the field number has been
placed in empty fields.

5.1.2 HCPP Lexical entries and their relations

Some of the kinds of words appearing in the lexicon are listed in Table 19. Certain relations to

58

nouns or adjectives that have homonyms which are *“carol”, “birth”
locations

nouns or adjectives that have homonyms which are “beach™, “serial”

not locations

nouns that are not homonyms but are locations “ship”, “hill”

nouns that are neither homonyms nor locations “singing”, “godmother”
verbs that are homonyms “raise”, “flash”

verbs that are not homonyms “visit”, “give”
adjectives that are not homonyms. “silly”, “broken”™

Table 19: The different kinds of words appearing in the lexicon.

field allowed elements conunents

1 the lexeme.

2 NIVIAICPIPREPIARTIPHRASEIPUNCTIBLANKIPRO | Categories of words and phrases.
N
Location, Number, plur. Attributes of the word.

4 relative frequency Not used by our generator.

morphological rule for pass#1: $2, $3,

Rules that allow subject verb agreement and
ensure that nouns have the proper singular and

plural forms.
6 morphological rule for pass#2: $13
7-n any(hing User-defined attributes.

Table 20: A listing and description of the reserved fields in VINCI that are common to each entry in the lexicon.

these words are necessary for the generation of jokes (see section 4.7). Figure 23 demonstrates

which relations are pertinent to the different kinds of words. These semantic relations will appear

in certain fields in the lexicon. All words belonging to the same word category (for example all

nouns) will have the same number and kinds of fields. These fields will be ordered in the same

way but not all of them will be filled. For example both a noun that is a homonym and a noun

that is not will have a specific field in their lexical entry reserved for homonym pointers. But

59

only the word that actually has a homonym will have a value for this field. The reason for

creating the lexicon this way was to keep it simple and consistent.

(a)

preposition
prep_assoc
noun
(homonym and
location)
homophone
NOUNI
(homophone)
()
preposition
prep_assoc

noun

?

NOUN3
(location)

synonym

®) vert
noun
_verb
synonym |
noun goun
per_or_snimal synonym
noun
homophone
NOUN2
(homophone)
) verb
inact_verb
noun
r
synonym
noun noun
per_or_animal
homophone
NOUN4 nouns
that are neither
locations nor
homophones

(e)

)
noun
modifier verb noun
why_x why_xy per_or_animal
VERB]
(homophone) noun
homophone
homophone
verb

synonym per_or_animal ADJECTIVE

(homophone)
verb noun

Figure 23: The different relations required for (a) nouns which are homophones and locations (b)
homophone nouns (c) nouns that are not homophones but are locations (d) nouns that are neither locations
nor homophones (¢} verb homophones (f) adjective homophones.

Tables 21-23 show where the semantic relations to nouns, verbs and adjectives appear in the

lexicon.

field the type of information appearing in the field

7 the surface form of the lexeme (i.e. how it will actually appear in a
sentence).
homonym

9 synonym phrase

10 per_or_animal

11 inact_verb

12 rep_assoc

Table 21: The lexical fields for nouns. Different schemata will make use of
different fields. Questionnaires and dictionaries were handed out to volunteers
and they supplied the various relations to the words making up the common
phrases.

field the type of information | comments

appearing in the field

7 the surface form of the

lexeme

8 homonym

9 syn The synonym of the verb goes here. Entries in
this field may be single verbs or they may be
verb phrases consisting of a verband a
preposition. For example let us say a lexical
entry is “peer”. A synonym of this might be
“look at”. The whole phrase “look at” would

pear here.

10 verb Let as say there is a lexical entry for the verb
phrase “look at”. To conjugate the verb in this
verb phrase, and have it agree with subjects,
the verb needs to be isolated so it appears in
this phrase. If the lexical entry is simply a
verb, the verb appears here.

11 preposition {optional} For the lexical entry “look at”, the preposition
“at” would appear in this field. If the lexical
entry is simply a verb, then this field is blank.

12 per_or_animal A person or animal associated with this
lexeme. e.g. (heal, doctor).

13 why_x example: “is caring”

14 blank reserved in case why_x needed to be split up.

15 why_xy_verb example: “want”

16 why_xy_rest example: “to be better”

Table 22: The lexical fields for verbs.

field the type of information appearing in the field

7 the surface form of the lexeme (i.e. how it will actually

appear in a sentence).

8 homonym (it is a noun)

Table 23: The lexical fields for adjectives.
5.2 Building the Lexicon

When building the lexicon, the utmost care was taken to ensure that it be “general and neutral”

61

i.e. not humour-specific [BR94, 13]. In other words we were careful that information was not put

in the lexicon with particular jokes in mind. The following sections describe the steps in creating

the lexicon and the whole procedure is summarized in Figure 25.

62

5.2.1 Generate the Initial List

First of all, 70 adjectives that have noun homonyms were taken from a list of homonyms on the
web [Co099]. The list contained only homonyms that sound the same but are spelled differently
(i.e. homophones). 7 obscure words were taken off the list, leaving 63 homonyms'. For the sake
of variety, we also wanted adjective homonyms that sound the same and are spelled the same (i.e.
homographs) so we consulted another source ([Fr66]). In 150 entries, however, only three
adjectives that had noun homonyms were found: “gross”, “major” and “minor”. Nonetheless,
these 3 were added to the list making a total of 66 adjective homonyms. From the same
homonym list on the web[C099], we then gathered 70 nouns that have noun homonyms. 9 of
these were obscure and were taken off the list, leaving 61 noun homonyms?.

The three homographs (for example “major” (the adjective) and “major” (the noun meaning
“military person’”) have numbers (“_1" and “_2"") appended to them so that they can be
distinguished from each other. The resulting unique identifier (the lexeme) is then put at the head
of a new line in the lexicon (field 1) because every word or phrase in the lexicon gets a single
line in which information about it is recorded. Homophones (for example “hair” and “hare) do
not require numbers added to thern and hence are written as they appear in the homophone list.
The category of the word is then recorded in field 2 and the class “Number” is put in field 3
(unless the homophone is a plural noun, in which case “plural” is written in field 3, indicating
that the word does not have a singular form). The symbol for the morphology rule that transforms
nouns into their proper singular or plural form is “$2” and is put in field S of each noun.
Similarly, “$3”, representing the morphology rule for verbs is placed in field S of each verb. A
rule labeled “$13” for the second morphology pass is put into field 6 of the article “a”. This rule

changes the “a” to “an” if the word following it in a syntax tree starts with a vowel. Field 7 is

IThe adjective homophones deemed obscure were “bundt”, “faux”, “grayed”, “gnu”, “plumb”, “rood” and
Lkmienfy'

63

filled with the near surface form of the homophone - i.e. the way the word will appear on the
screen (“near” surface form because an “s” might be added to the string in field 7 if the word’s
plural or third person present form is required). The “homonym:” tag along with the word’s
homophone is then put in field 8. And the “syn:” tag along with a synonym of the word are put in
field 9. These synonyms were provided by volunteers. Field 4 is filled with a blank because it
relates to a feature of VINCI which is not required for our joke generator.

Thus, let us say the words “trunk” and “raise” (and their homonyms) were two of the words
randomly chosen from the homonym list to appear in the lexicon. After their insertion, the

lexicon would look like Figure 24.

“trunk_1"INI { #7!$ 131" trunk”lhomophone:"trunk_ 2"Isyn: “luggage compartment of car’!
“trunk_2"ININumberi I$2[$13I"trunk’lhomophone:""trunk_1"Isyn: “clephant’s nose”|
“raise”[VINumberl I$31$13("tip”Thomophone:”raze”lsynl: “bring”; syn2: “up”l
“raze”VINumber! I1$3($ [3{"tip”’lhomophone: “raise”lsynl:"destroy”; syn2: “”|

Figure 24: the lexical entries for four homophones after step 1 has completed.

5.2.2 Remove unuseful homonyms and add common phrases to the lexicon.
The second step for creating the lexicon involved picking phrases from the Oxford English

dictionary®. A word from the list of homonyms (5.2.1) was looked up in the dictionary and the

>The noun homophones deemed obscure were: “ewe”, “eyelet”, “gnus”, “knaught”, “lien”, “mettle”, “plait”,
“theum”, “whit”.

* We tried using z program on the web called PhraseFinder[PF99] which takes a word as its input and
outputs common phrases in which that word appears. For example if the word “fair”” (a homophone) is input
to PhraseFinder, the list of common phrases output is: “faint heart never won fair lady™; “fair and
aboveboard™; “fair and square”; “fair crack of the whip”; “fair to middling”. But this program is incomplete
and failed to find many phrases that appear in the OED. Once its database base has expanded (users of the
program can add to its database), however, it could be used for automating the creation of the lexicon.

choose only the following kind of
homophones:

e anoun has a noun homophone
e averb has a verb homophone
e an adjective has a noun
homophone.

5.2.1 Generate initial homonym
list.

homophone
website *

5.2.2 Remove unuseful homonyms

Oxford English .
dictionary ’ and add common phrases to the lexicon.

5.2.3 Add the remaining words making up
the common phrases to the lexicon.

5.2.4 Find required relations to lexical entries
and add them to the lexicon

Figure 25: The first steps in creating the lexicon. A list of homophones is compiled from a listing on the web and
is put into the lexicon. Then a list of common phrases is derived from those homophones using a dictionary.
The resulting list of common phrases is added to lexicon A. The words appearing in the common phrases which
do not have their own entries in the lexicon are then added to it.

first phrase to occur in the entry for that homonym which fit our syntactic criteria was picked.
This was done for each of the homonyms. Care was taken to ensure that a phrase which ends up

in the lexicon was not selected based on foreknowledge that it would yield good results. If a

65

common phrase with the proper syntax (described in section 4.4) could not be found for a word
or for that word’s homonym, both words were deleted from the lexicon. If multiple common
phrases were found for a homonym, only the first one occurring in the dictionary was chosen®.
When a common phrase meeting the syntactic criteria was discovered, the word and its homonym
remained in the lexicon and the phrase and certain information about it were added. For example,
let us say common phrases containing the word “trunk’ (as in “luggage compartment of car’’) and
the word “raise” were found. Figure 26 shows what our sample lexicon might look like once the
second step has been completed.

From the 66 adjective homonyms, 41 common phrases were found but, for the sake of
limiting the size of the lexicon (which is very time consuming to build by hand), only the first 20
were put in it. From the 61 noun homonyms, we stopped searching for common phrases when
over 100 had been found. Upon examining this list we found that 16 of them were noun phrases
in which one of the words was a location or container. Thus these 16 phrases were placed in the
lexicon because schemata 7 and 8 could make use of them. This did not constitute a violation of
our rule that the lexicon is to be built with no particular jokes in mind, however. If all 100
common phrases had been entered into the lexicon - as they would be for a system designed for
comprehensive natural language generation - VINCI would have found the 16 relevant phrases
anyway and ignored all the others when executing the algorithms for schemata 7 and 8. Thus by
placing the 16 common phrases with noun locations in the lexicon, we were not restricting
VINCI’s search for appropriate noun phrases for schemata 7 and 8 but were simply saving
ourselves from having to do a lot of unnecessary typing. Figure 26 shows that we have classified
all common phrases to be of the same

type. In spite of their syntactic differences - “trunk space” is a noun phrase and “raise cattle”

* For example the homophone “bare” appeared in numerous common phrases such as “bare truth”, “bare
facts”, “bare majority”, “bare necessities™ etc. but only “bare truth”, the first phrase to occur in the
dictionary’s entry for this word, was placed in our lexicon.

“trunk_1"INI | #7i$13("trunk”lhomophone”trunk_2"lsyn: “luggage compartment of car”|
“trunk_2"ININumber! I$2!$ 13" trunk”thomophone:"trunk_1"Isyn: “elephant’s nose™!
“raise”"[VINumberl [$3I6"tip”lhomophone:raze”Isyni: “bring”; syn2: “up”l

“raze”IVINumberl {$3 [6/"tip”lhomophone: “raise”Isyn1:"destroy”’; syn2: “"|

“trunk_space”ICPI314#1I$ 1317ICPpt1:"b"/BLANKICPpt2:"b"/BLANKICPpt3:"b"/BLANKICPpt4:"b"
/BLANKICPptS:"trunk_1"/NICPpt6:"space”/NI
“raise_cattle”ICPI3I4#1I6i7ICPptl:"raise”/VICPpt2:"b"/BLANKICPpt3:"b"/BLANKICPpt4:"b"/BLA
NKICPptS: “b"/BLANKICPpt6: cattle”/NI

Figure 26: Adding common phrases to the lexicon.

consists of a verb and a noun - both phrases are classified as CPs. The type CP is a kind of
ordered superset which consists of the following components: verb, preposition, article,
adjective, noun#l, noun#2. A particular phrase wiil contain all of these components but only a
subset of them will have values. For example all the components of the phrase “trunk space” will
be blank except for the last two: noun#land noun#2. The phrase “raise cattle”, however, has
values for the verb and noun#2 components but the remaining ones are blank. Classifying all
common phrases as the same type (in spite of their varying syntaxes) was not an attempt to model
the way human beings regard common phrases: we are not suggesting that people think of
common phrases in this way. Nor was grouping them under one label motivated by reasons of
easing implementation. We were simply trying to make the point that any kind of common phrase
containing a homonym can act as the seed of a joke - that all common phrases are identical in this

respect. Table 24 summarizes the kinds of common phrases our joke generator acts upon.

5.2.3 Add the remaining words making up the common phrases to the lexicon.

So far, the only entries in the lexicon are homonym verbs, nouns and adjectives and the common

phrases which contain them. (For example, see Figure 26). The next step in developing a lexicon

for our joke generator involves creating lexical entries for the words in the common phrases
which do not yet have their own lines in the lexicon. These words will be nouns, adjectives,

verbs and determiners. This step is important because in order for VINCI to make use of these

67

verb | preposition’ { article adjective | noun | noun type of example
expression
schema yes no optional no no yes verb - noun “raise cattle”
#1,2,3,4,5 phrase or “kick the
habit™
schema #6,9 no no no yes no yes noun phrase “broken heart”
schema #6,7,8 | no no no no yes yes compound “peer
noun pressure”

Table 24: The types of phrases handled by the schemata.

words and others associated with them, they must have their own separate lexical entries. Thus in

our running example, the words “cattle” and “space”, along with information for their first nine

fields are added to the lexicon in this step. Figure 27 demonstrates the result.

&
«
&
.
‘

NKICPpt5: “b”/BLANKICPpt6:"cattle”/Ni

¢

‘trunk_1"ININumberl #713 13"trunk”lhomophone™trunk_2"Isyn: “luggage compartment of car”!
‘trunk_2"[NINumber! I1$2I$ 13" trunk”’thomophone:"trunk_1"lsyn: “elephant’s nose"l
‘raise”VINumberl i$316/""tip”thomophone:raze”Isyn1: “bring”; syn2: “up”l
‘raze”[VINumberl 1$3 |6I"up”homophone: “raise”Isynl:"destray”; syn2: “"|
‘trunk_space”ICPI314H#1i$1317ICPpt1:"b"/BLANKICPpt2:"b"/BLANKICPpt3:"b"/BLANKICPptd:"b”
/BLANKICPptS: trunk_1"/NICPpt6:"space”/NI
‘raise_cattle™ICPI3I4H11617ICPpt1:"raise”/VICPpt2:"b"/BLANKICPpt3:"b"/BLANKICPpt4."b"/BLA

‘space”ININumber! #71$ 13 space”| Isyn: “room”l
‘cattle”[Niplurl 716/ cattle”| Isyn:"cowsl

Figure 27: The lexicon after step 5.2.3.

5.2.4 Find certain relations to lexical entries and add them to the lexicon

The relations for the various nouns, adjectives and verbs were collected by means of volunteers

who answered a questionnaire. After this step, the lexicon contains all the information required

for the purposes of our joke generator and looks like Figure 28.

5.3 Generating the Jokes

Figure 29 shows the implementation of algorithm #1 in VINCI code and the lexical entries

required to generate a particular joke.

“trunk_1”ININumber! #7I$13/"trunk”” thomophone”trunk_2"Isyn: “luggage compartment of car”l
“trunk_2"ININumberl {$2($13["trunk”Thomophone: trunk_1"Isyn: “elephant’s nose”l
“raise”’[VINumberl I$316I"tip”lhomophone:"raze”Isyn1: “bring”; syn2: “up”l

“raze”[VINumberl I$3 |6/ tip”Thomophone: “raise”Isynl:"destroy”; syn2: “”|
*“wrunk_space”ICPI3146#11$13[7ICPpt1:"b”/BLANKICPp12:"b"/BLANKICPpt3:"b"/BLANKICPpt4:"b"
/BLANKICPp(S5:"trunk_["/NICPpt6:"space”/Ni
“raise_cattle"ICPBM#16[7ICPpt1:"raise”/VICPpr2:"b"/BLANKICPpt3:"b"/BLANKICPpt4:"b"/BLA
NKICPptS: “b”"/BLANKICPpt6:"cattle”/NI

“space”[NIsingl #7I$13"space”} |

“cattle”Niplurl #71$13["cattle”! |

Figure 28: A sample of what the lexicon might look like after steps 5.2.1-5.2.4 have been
performed on two homophones: “trunk™ and “raise”.

BASE=CP %o
ROOT =MAKEPIVOT: BASE %

MAKEPIVOT = TRANSFORMATION

CP:

ART/'The” {The}
1/@10:CPpt3/@9:per_or_animal {farmer}
1/@8:CPpt1/@12:why_x {is violent}
PUNCT/™A.” {.}
PRON/"He” {He}
1/@8:CPptl[sing] {raises)
1/@9:CPpr2 { }
1/@10:CPpt3 {cattle}
PUNCT/"A {.}

%

Figure 29: Implementation of Schema #1 in VINCL

68

* None of the phrases acted upon by our algorithms have a preposition in them but the category exists
nonetheless because synonyms of these phrases might include them.

Chapter 6

Analysis of Results

6.1 Evaluating the output

Of the 11 schemata, three (6b, 7 and 8) were implemented. The lexicon contained 36
common phrases and 240 words (nouns, verbs, determiners, prepositions and adjectives)
and from it 50 jokes were output: 34 from schema #6b, 7 from schema #7 and 9 from
schema #8. Questionnaires asking people to evaluate the puns were distributed to 16
volunteers (a sample questionnaire appears in appendix D)'. The jokes were graded on a
scale from 1 to 5%

1: Not a joke. Does not make sense.

2: Recognizably a joke but a pathetic one.

3: OK. A joke you might tell a child.

4: Quite good.

5: Really good.

Table 25 shows examples of jokes that received these various scores. The average point

score for all the jokes was 2.81. In other words the jokes were, on average, better than

pathetic but, according to the volunteers, not quite good enough to be enjoyed by a child.

This statistic obscures the fact, however, that quite a number of good jokes were
generated. For example, Figure 30 shows that nearly half of the jokes (22 out of 50)
scored between 3-5. And Figure 31 reveals that a significant number of votes of 4 and §

were given. In retrospect, jokes might have received higher scores had they been heard

! One of the questionnaires was rejected because the person did not follow the instructions.
% This scale was created by [BR94].

69

70

rather than read by the volunteers. Performing an oral evaluation of the jokes may be a

better idea for future experiments involving these kinds of puns.

Score Jokes
a 1-2 The butcher commits a carelessness. A gross negligence.
Joan visits a grave in the basement. A bier cellar
b 2-3 The diver joins a coalition. A coral society.
A store-keeper boards a ship. A sale boat.
c 34 The sailor earns a diploma. A berth certificate.
The juvenile studies a writer. A minor poet.
d 4-5 The pheasant breathes oxygen. Fowl air.
The sailor bears a stress. Pier pressure.
Table 25: Examples of jokes with different scores.
25
Number of20
jokes
15
10

I m B

1-1.9

2-2.9 339 4-5.0

Range of average scores

Figure 30: The average scores of the jokes. 7 jokes received a score
from 0-1.9, 21 from 2-2.9, 16 from 3-3.9 and 6 from 4-5.

6.2 Improving the joke generator

The different components of the generator - the lexicon, schemata and templates - affect

the quality of the jokes output. The results of the experiment suggest some simple ways

the lexicon and schemata could be changed to improve the jokes. For instance the

lexicon should not contain obscure words. Although all words deemed obscure were

100

920
80
Number of votes 70
60 4
50 4
40 <
30 4
20 -
10 4
0 4 T v T v
1 2 3 4 L

The Scores

Figure 31: The number of votes per score.

removed from the lexicon during its creation (section 5.2.1), some words which were accepted

proved to be unknown to many of the volunteers evaluating the puns. For example a number of

71

the volunteers judging the jokes did not know the meaning of “buss”, “bier”, and “gross” (as in a

the schema average score of a average score of a joke generated by the
joke generated by schema if obscure words are not used by
the schema the generator

schema 6b 2.79 2.88

schema 7 2.94 unaffected

schema 8 2.80 3.09

Table 26: The average score of each schema and the average score if obscure words

are filtered out.

qualifier of weight). If puns with these words were discounted, the average score for schema 6b

rises from 2.79 to 2.88, the score for schema #7 is unaffected because it did not make use of any

of these words, and schema #8’s score rises significantly from 2.80 to 3.09 (schema #8’s two

worst rated puns are eliminated).

72

Another drawback with the lexicon was that some of the phrases in it were not really
common phrases and they tended to produce inferiour puns. For example phrases such as “great
hole”, “main force”, “lone parent”, and “bare truth” are pairs of adjectives and nouns that can
logically be grouped together, but they are not so intimately connected that they would be
considered colloquial or idiomatic expressions. These phrases made it into the lexicon because
when a homonym was looked up in the dictionary, the first phrase to occur in the entry for that
homonym which fit our syntactic criteria was picked. We assumed that a phrase that occurred in
an entry for a word would be idiomatic but this was not always the case.

It is important to use common phrases because a lot of the force of the HCPP joke depends
on subverting the familiar: if the phrase is not really familiar, undermining it has little impact.
Thus choosing phrases more carefully would improve the puns. A more specialized dictionary
containing only phrases which are idiomatic would simplify the selection. Partridge’s Dictionary
of Cliches(Pa62], Henderson’s Dictionary of English Idioms(HeS6) and Wood's English
Collogquial Idioms [W069] were consulted but many of the expressions in them do not have the
syntax required by our program. A program on the web called PhraseFinder [PF99] which takes a
word as input and outputs phrases that make use of that word looks like a promising source for
future research once more entries for it have been supplied. But it too missed many of the
common phrases that a dictionary contains and so it was not used as a source. Therefore, if we
were to conduct the experiment over again, the Oxford English dictionary would still act as the
source for the phrases but an impartial human judge would examine the resulting list and be
allowed to reject non idiomatic phrases. If this were done, significantly fewer bad puns would be
generated.

Another way of improving the generator would be to have it reject phrases which are simply
not good candidates for punning. The puns derived from these phrases are not funny, not so

much because of a problem with individual schemata but because the general philosophy of using

73

homonymy as a logical mechanism for creating script opposition cannot always be relied upon.
One is depending on the vagaries of chance - the accidental bringing together of two ideas and
sometimes those ideas clash semantically. Therefore a filtering mechanism should be constructed
which could discern semantic discord between words and reject them as candidates for puns.
Implementing this filter would be straightforward in VINCI: words would be given attributes
(such as “edible”, “animate”, “abstract” etc.) and the union of words with clashing attributes
would be prohibited. Deciding on which attributes clash, however, is not so straightforward. For
instance, Binsted argues that constructed phrases containing abstract nouns should be disallowed
because they “do not evoke strong images the way more concrete words do” [BR94, 27]. It is true
that some of these phrases seem impossibly hard to pun with: even a human being would have
trouble finding a context in which one of our phrases “mane force” makes some kind of sense.
But we do not agree that all phrases with abstract words should be rejected. Some of our best
puns (see puns 8, 18, 39 and 47 in appendix E) contained a phrase with an abstract and concrete
noun. (In fact the worst performing puns contained concrete compound noun phrases such as
“grate hole”, “base clef”, “hole grain”, “pail person” , “male bag” and “bass camp’). Thus a
filtering method more sophisticated than the indiscriminate rejection of constructed phrases with
abstract nouns seems warranted. Section 7.3 outlines a semantic network and attribute system
which could be used to find points of similarity between words and if none were found, would
allow us to more confidently assert that the words are indeed too dissimilar to be joined together

in a pun.

Chapter 7

Conclusion

7.1 Summary

Attardo and Raskin’s theory of humour was extended using concepts from Binsted.
These insights helped us devise schemata for a particular kind of pun which we call the
HCPP. A lexicon was then hand built with the following resources:

e alist of homonyms

e adictionary

e volunteers

The schemata for generating the puns were implemented as grammars which were
executed by VINC], a natural language generator. Using these grammars and the lexicon,
VINCI generated 50 puns (listed in appendix A) and volunteers were asked to judge their
quality on a scale of 1 to S. A significant number of them (22/50) received an average
score from 3 to 5 and some slight changes mentioned in section 6.2 would improve the

results further.

7.2 Possible extensions and improvements

Upon looking at the results, methods of adding variety to the kinds of puns output
became apparent. For instance Figure 32 represents a schema based on schema 6b. The
dotted line in Figure 32 marks the only difference to the schema and the template has

been altered so that two sentences are output (rather than the sentence and sentence

74

fragment output by the original schema). In this new schema, the same connection exists
between the pivot (“dire™) and the target (“textile worker) but the pivot sentence’s verb
(“fulfills”) and the second word in the common phrase (“need”) relate to the adjective in
the target sentence. These kinds of puns add variety to the generator because they have a
different structure and rhythm and make use of different relations between words. Thus
in addition to the kinds of puns output in our experiment, (27a) and (27b), (27¢) and
(27d) could be produced. Variety is important because people tire of hearing the same
kind of pun with the same sentence structure. For this same reason, it would also be
useful to implement the other schemata 1-5, 6a, 9, 10 described in section 4.7.

Another way of improving the output of the generator would be to find deeper and
subtler connections between the pivot sentence and the target sentence. A method for
doing this is discussed in the next section which outlines what the next generation of an

HCPP joke-generator should look like.

a | The textile worker fulfills a requirement. A dyer A pun output by schema 6b.
need.

b | The grizzly speaks a verity. A bear truth. A pun output by schema 6b.

¢ | The textile worker is useful. He fulfills a dyer A possible pun output by a new
need. schema based on 6b.

d | The grizzly is honest. He speaks the bear truth. A possible pun output by a new

schema based on 6b.
Table 27: Puns output by 6b and by a variation of it.
7.3 The next generation

We envision that the next generation of the HCPP generator will find deeper, more
varied and subtler connections between words in a more sophisticated semantic network.
The schemata would investigate how words in the “fake” phrase (for example “dyer” and

“need” in the constructed phrase “dyer need”) might relate in their respective contexts.

75

76

1. noun(h)-noun
2. adj(h)-noun where hom(adj)->noun

“textile worker”
noun B

*per_or_animal

noun A} “dyer”

homonym -“j
adjecuvc inact_verb

“dire’ requ:rement
noun or unD
adjective

synonym

np
common
phrase

Template for variation on Schema #6b
“The"<nounB> “is” <adjective> “.”
“He* <verbA> {a/an} <nounA> <nounCo>*."

Figure 32: A variation of schema 6b which aims to improve the rhythm of the resuiting puns and to create a subtier
context for the punchline. Possible puns output by this schema are: “The textile worker is useful. He fuifills a dyer need”,
“The grizzly is honest. He speaks the bear truth”. “The knight is greedy. He acquires duel ownership”, “The priest is
responsible. He prevents an idol rumour”.

The idea of primitive concepts plays a central role in the creation of this more

sophisticated semantic network.

Primitive concepts

The notion of primitive concepts is important for artificial generation of humour and for
computational linguistics in general. Most linguists agree that ideas are understood in
terms of each other. A word’s definition points to other words and these words’
definitions in turn depend on the meaning of other words. In other words, words act like
metaphors of each other. Some linguists argue, however, that all words cannot simply be
pointers to other words because how then would any of them have meaning? They
postulate that this regression does not proceed infinitely because there is a set of
primitive concepts that are somehow “understood directly, without metaphor” (Lakoff,
56).

In Semantic Structures {Ja90], Ray Jackendoff draws an analogy between syntax and
semantics to defend this idea that primitives form a foundation for human beings’
understanding of words. He argues that just as an infinite number of sentences are
formed from a finite set of words and rules for combining these words, so too an infinite
number of concepts must be generated from a finite set of concepts and rules of
combination. A person does not have an infinite list of every possible syntactic structure
encoded in her brain yet she can with innate and learned rules she possesses, produce an
infinite variety of sentence structures. Equally, Jackendoff argues that an infinite number
of concepts exist which are not stored within the narrow compass of our finite brains but
instead “must be generated on the basis of a finite set of principles of combination”
[Ja90, 9].

A semantic network expressing ideas in terms of their primitive components would
be very useful for natural language understanding and generation because deep
connections between words would be captured - even between seemingly disparate

words. For example, the kind of semantic network we visualize would possess links

77

between the following verbs: “run”, “butter”, “drive”, “drink”, “swim”, “stop” and
“pocket”. On the surface, many of these actions seem quite unrelated but an idea uniting
them all is the primitive concept of GO [Ja90]. It is obvious how the words “run”,
“drive” and “swim” express this idea but not so evident how the others do: “drink”
contains the idea of a liquid GOing from a receptacle to a mouth, “pocket” means
something GOing from somewhere into a pocket, and stop can be defined as not GO.

In regards to our pun generator, if ideas were expressed in terms of their primitive
components, their commonalties and differences would be more clearly defined. And so
finding the connection between two often quite different ideas brought together by the

accident of homonymy woulid be facilitated.

a | The textile worker fulfills a requirement. A dyer A pun output by the present
need. generator.

b | The factory hires more employees. There is a dyer | A pun output by an improved
need. _generator.

c | The factory fires employees. There is no dyer ditto above.
need.

d | Joan visits a grave in the basement. A bier cellar. | A pun output by the present

enerator.

e | The funeral home has a basement. It is a bier A pun output by an improved

cellar. generator.

Table 28: Puns output by the present generator and an improved generator.

Take for example “dyer need”, one of the fake phrases constructed by schema 6b in our
experiment. The two ideas forced together here are “dyer” and “need” and a simple
context merging them was created in pun (28a). A subtler and more sophisticated
context could be found, however, with the proposed semantic network which, like our
present lexicon, makes use of various relations and attributes but adds the feature of
primitives. It is interesting to note that associating primitive concepts with a word could

be accomplished using VINCT’s attribute system. High-level attributes (such as

78

79

“employer” in Figure 33) could continue to exist but primitive concepts (such as
“building” and “want” in Figure 33) would also be ascribed to words as attributes.

Figure 33 represents a sample of our proposed network and demonstrates one way
the idea of “need” might manifest itself in the world of a “dyer”. The network shows that
the word “need” contains the primitive idea of “want” in it. The network also contains
information that a dyer can be an “employee” who works for an “employer”. Employees
and employers have different relations to each other, one of which is that an employer
“hires” employees. And one of the primitive ideas inherent in the idea of “hiring” is
“wanting”: an employer “hires” an employee because it “wants” that person or it “fires”
an employee if it no longer “wants” that person. In this way a subtle and realistic relation
between “need” and “dyer” would be found in the knowledge base and the resulting pun
(28b or c) would be an improvement of (28a), the pun generated in our experiment. In
the same way, 28(d) could be improved to 28(e) if a semantic network with primitive
concepts were used (see Figure 34).

It would be difficult to determine how to carve up the world into categories of things and
actions and decide which ideas are primitive'. And it would be an arduous task to decompose
concepts into their primitive components but not impossible. In fact some thesauruses already
have the kind of structure we envision for our semantic database: words are grouped together
around a core idea (which could be thought of as a primitive idea). The only real difference

between our network and this kind of thesaurus would be that the core ideas in our semantic

! For example at the beginning of his book Jackendoff chooses CAUSE to be a primitive but then argues
later that this idea is not in fact primitive but should be decomposed further [Ja90, 131]. He states thata
success parameter needs to be added in order to distinguish between cases when the application of some
causative force is successful and when the result is undetermined. For example “Harry forced Sam to go
away” (successful outcome) and “Harry pressured Sam to go away” (undetermined outcome). In this way a
linguist’s search for primitive concepts could be compared to the experience of generations of physical
scientists who have explored the structure of the atom: their notions of what is indivisible are frequently
challenged.

database would be at a more primitive level and so more words not normally associated with
each other would be linked together via primitive concepts. For example the words “hire” and
“need” would be connected in our network via the primitive concept “want” but are not
associated with each other in a regular thesaurus. However some core ideas appearing in Roget’s
Thesaurus [Ch92] could, as they stand, be classified as primitive concepts. For example one of
these ideas or categories is “impairment”, a concept which pervades many different contexts.

Some of the adjectives listed in the entry for this idea are:

1. injured, hurt, harmed

2. broken, chipped, shattered, in pieces, in shards
3. handicapped, maimed, limping

4. ragged, tattered, torn

S. depressed, frazzled, languishing, pining.

Within a general category, the thesaurus groups adjectives together into these kinds of
semantically related clusters. Our network would contain these groups and attributes would be
assigned to them to describe the kinds of nouns they can modify. For instance, lists 1,3, and 5
apply to animate objects (S particularly to people), list 2 to breakable objects, and list 4 to things
made out of material such as clothing. In this way deep and metaphorical connections between
seemingly different ideas such as “broken” and “ depressed” or “chipped” and “maimed” are
captured and made available to our joke generator. The generator would find subtler connections
between the pivot sentence/phrase and the target sentence, and better puns would be formed. For
instance schema #9 (section 4.2) could be implemented and would yield jokes such as “John

sees a depressed deer. It is a broken hart™.

81

| factory(employer; building) |
—

why x
hi res orks for | textile worker(employee) |
T per_or_animal
h
why < e e -

l employer I i
&=

primitive idea

Figure 33: Part of the upgraded semantic network. The words in circles are primitive concepts. The
resulting puns might be (25b) and (25c¢).

L funeral home (employer; buiiding)]

T

|funeml director(employee) I

*per_or_lnilml
primitive idea
[biei_l Lbasement]

Figure 34: Part of the upgraded semantic network. A pun resulting from this might be
27(e).

7.4 Conclusion

The goals outlined in section 1 have been accomplished. Specifically we found some of

the links that a lexical database will need to possess to generate a certain kind of pun and

82

we built a small database to hold these relations (goals 1 and 3). We created 10 schemata
and templates for generating this type of pun and implemented three of them in VINCIL, a
natural language generator (goals 2 and 4). From these three implemented algorithms, 50
puns were computationally generated and then evaluated by a number of volunteers.
Obvious ways of improving the output were suggested in chapter 6 and an extensive
improvement was discussed in section 7.3.

We analyzed humour in detail because our goal was to discover formulas for creating
puns and to implement them into a program which could generate jokes. We were
successful in showing that recognizable jokes can be generated by a computer - that they
obey a type of grammar - and so we punctured some of the mystique surrounding
humour.

We discovered certain relations between words that are useful for joke generation
(for example: per_or_animal, synonym, prep_assoc, homonym, act_verb etc.) and thus
for natural language generation in general. In other words we have shown some of the
semantic links that will have to appear in the enormously complex semantic network that
we think needs to be constructed for truly automated generation and understanding of
natural language.

Building HCPPs involved trying to combine two often very disparate ideas into a
single sentence. Attempting to do this revealed the complexity of creating coherent
sentences. We found that attributes are an effective way of enforcing semantic coherence
and we introduced the idea of primitive ideas which can be regarded as special kinds of
attributes. A semantic network containing primitive concepts and words’ relations to
them would act as a powerful resource for generating more sophisticated jokes and for

natural language generation in general.

83

Bibliography

[AlI95]

[AR91]

[(Bin96]

[BR94]

(BR96]

[Ch92]

[Chi92]

[Cu88]

[C099]

[Fr66]

[Gio91]
[Hes6]
(Ho77]
[Ja90]
[La80]
[Len90]

[LL97]

James Allen. Natural Language Understanding. The Benjamin/Cummings
Publishing Company, Inc., California, 1995.

Salvatore Attardo and Victor Raskin. Script theory revis(it)ed: joke similarity and
joke representation model. Humor, 4(3):293-347, 1991.

Kim Binsted. Machine humour: An implemented model of puns. Dissertation,
University of Edinburgh, 1996.

Kim Binsted and Graeme Ritchie. A symbolic description of punning riddles and its
computer implementation. Research Paper 688, University of Edinburgh, Edinburgh,
Scotland, 1994.

Kim Binsted and Graeme Ritchie. Speculations on story puns. Proceedings of the
International Workshop on Computational Humour, Enschede, Netherlands.

Ed. Robert L. Chapman. Roget’s International Thesaurus. Harper Perennial,
New York, 1992.

Delia Chiaro. The language of jokes: analysing verbal play. Routledge, London,
1992.

Ed. Jonathan Culler. On Puns. Basil Blackwell Lid., Oxford, 1988.

Alan Cooper. Alan Cooper’s Homonyms. As of August 1999, available at
hitp://www.cooper.com/alan/homonym.html

Ed. Julian H. Franklyn. Which Witch? Being a grouping of phonetically compatible
words. Hamish Hamilton, London, 1966.

R. Giora. On the cognitive aspects of the joke. Journal of Pragmatics, 16:465-485.
B. Henderson. Dictionary of English Idioms. James Blackwood&Co., London, 1962.
C.F. Hockett. The View from Language. University of Georgia Press, Athens, 1977.
Ray Jackendoff. Semantic Structures. MIT Press, Cambridge Mass., 1990.

George Lakoff. Metaphors We Live By. University of Chicago, Chicago, 1980.

Douglas B Lenat. Building Large Knowledge-Based Systems.Addison-Wesley
Publishing Company, Inc., Reading, 1990.

G. Lessard and M. Levison. Rule-governed Wordplay and Creativity. Computational

[LL96]

[LL95]

(LL93]

[LL92a]

[LL92b]

[Min63]

[OD92]

[Pa62]

[PF99]

fPG84}]

[RAR93]

[Ras85]
[Ri83]
[Ur80)

[Th95]

[Wo69]

models of Creative Cognition Conference. Dublin, 1997.

M. Levison and G. Lessard. VINCI Project: Natural Language Generation
Environment Documentation. Queen’s University, 1996.

G. Lessard and M. Levison. Linguistic and Cognitive Underpinnings of Verbal
Humour. International Cognitive Linguistics Association conference, Albuquerque,
NM, 1995

G. Lessard and M. Levison. Computational Models of Riddling Strategies.
ACH/ALLC93 Conference Abstracts, pp. 120-122, Georgetown, 1993.

M. Levison and G. Lessard. A System for Natural Language Generation. Computers
and the Humanities, 26:43-58, 1992.

G. Lessard and M. Levison. Computational Modelling of Linguistic Humour:
Tom Swifties, ALLC/ACH92 Conference Abstracts, pp. 175-178, Oxford, 1992.

M. Minsky. Steps Towards Artificial Intelligence. E. Feigenbaum and J Feldman,
editors, Computers and Thought, pages 406-450. McGraw-Hill, 1963.

William O’Grady and Michael Dobrovsky. Contemporary Linguistic Analysis: An
Introduction. Copp Clark Pitman Ltd., Toronto, 1992.

Eric Partridge. Dictionary of Cliches. Routledge&Kegan Paul Ltd., London, 1962.

Phrase Finder As of August 1999, available at http:/fwww.shu.ac.uk/web-
admin/phrases/list.html.

W.J. Pepicello and Thomas A. Green. The Language of Riddles. Ohio State
University, 1984.

Wilhelm Ruch, Salvatore Attardo and Victor Raskin. Toward an empirical
verification of the General Theory of Verbal Humour. Humor, 6(2):123-136, 1993.

Victor Raskin. The Semantic Mechanisms of Humour. Dordrecht Reidel, 1985.
Elaine Rich. Artificial Intelligence. McGraw-Hill, 1983.

Lawrence Urdang. Picturesque Expressions. Gale Research Company, Detroit Mich.,
1980.

Ed. Della Thompson. The Concise Oxford Dictionary of Current English. Clarendon
Press, Oxford, 1995.

J. Wood. English Colloquial Idioms. MacMillan and Co. Ltd., 1969.

Appendix A - The lexicon, morphology rules,
attributes and terminals.

The lexicon

"John" | PROP|sing| |#1]|| | | "He" /PRON|

"He" | PRON|sing| | #1] | |

*Joan® | PROP|{sing| [#1] || | "She" /PRON|

"She" | PRON|sing| | #1]|]]

"The" |ART| | [#1

“the" |ART| | [#1

"a" [ART||||$13]["a"}

“A" |ART|||[$13]|"a"]

"~ "|PUNCT| | | #1]

"on" | PREP #1

"in"|PREP]| | | #1

"at" | PREP| | |#1

“It" |N|||#1

"is"|V]||#1

"to" |PREP| | |#1]

"barren land"|CP|||#1|||||]|CPptd:*barren"/ADJ||CPpt6:"land"/N|
"bare truth"|[cP|||#1]|]||[]||CPpt4: "bare"/ADJ||CPpt6:"truth"/N|
"serial

killer" |CP|||#1|]| ||| |CPpt4:"serial*/ADJ| |CPpt6:"killer"/N|
"choral

CPpt4:"choral®"/ADJ| |CPpt6: "society" /N|

society" |CP|| |#1 |
| ||| |cPpt4:"dire"”/aDJ| |CPpt6: "need"” /N|

"dire need" |CP
*dual

ownership" |CP| | [#1]| |||] |CPpt4:“dual"/ADJ| |CPpt6: "ownership" /N|
"foul air"|cp|||[#1]]|]||]|CPptd:"foul"/ADJ| |CPpt6:"air"/N|

LT
|#1]]

"gross

negligence" |[CP|||#1]|]||||CPpt4:"grossl"/ADJ| |CPpt6: "negligence” /N
"great hole" |CP|||#1]]| CPpt4d: "great”/ADJ| |CPpté6: "hole" /N|
"hoarse voice" |CP| | |#1 | |cPpt4: *hoarse* /ADJ| |CPpt6: *voice" /N|
"whole grain"|CP]||#1] |CPpt4: *whole" /ADJ| |CPpt6: "grain” /N|
"hostile

enemy" |CP| | |#1| ||| | [cPpt4:"hostile"/ADJ| |CPpt6: "enemy” /N|

"idle rumour" |CP|||#1 |cPpt4:"idle" /ADJ| |CPpt6: "rumour” /N|
"lone parent" |CP|||#1 |CcPptd:"lone" /ADJ| |CPpt6: "parent* /N|
"main force" |CP||]#1}| CPpt4:"main"/ADJ| |CPpt6: "force" /N|
"majoxr

surgery" [CP|| |#1]|]| ||| |CPpt4: "majorl"/ADJ| |CPpt6: "surgery" /N|
"minor poet®|CP|||#1]| CPpt4:"minorl*/ADJ| |CPpt6: *poet" /N|
"naval ship" |[CP|||#1]| CPptd:"naval"/ADJ| |CPpt6:"ship"/N|
"pale person"|CP|||#1 |CcPptd:"pale" /ADJ| |CPpt6: "person" /N|

"bass clef"|CP|||#1||]|||||cPpt5: "bass"/N|CPpt6:*clef"/N]|

"beech tree" |CP|||#1 [|][|lcPpt5:"beech*/N |CPpt6: "tree"/N|
"birth certificate"|CP||[#1|]|]||[]||cPptS:*birth"/N
|CPpt6:"certificate" /N|

"carol singing®|CP|||#1|||[[]||CPptS:"carol"/N |CPpt6:"singing"/N|
"fairy godmother*" |CP|[[#1]|]||{]|||CPpt5:"fairy"/N

| CPpt6 : "godmother " /N

"peer pressure”|CP||[|#1||[|[|]||CPptS:"peer"/N |CPpt6:"pressure”/N|
"air bag" |CP|||#1] CPpt5:*air"/N |CPpté6:"bag"/N|

"ant hill" |[CP|||#1 CPpt5:*"ant"/N |CPpt6:"hill"/N|

"base camp" |[CP| | |#1 || cPptS:*base*/N |CPpt6:"camp"/N|
"nightclub” [CP| | |#1 |CPpt5: "night"/N |CPpt6:"club"/N]|

"mail bag"|CP|||#1 CPpt5:"mail*"/N |CPpt6:*bag"/N|

"beer cellar"|CP|||#1 | [[cPpt5: "beer" /N |CPpt6:"cellar"/N|
"dockyard" |CP| | | #1 CPpt5S: "dock"/N |CPpté:“yard"/N|
"sailboat" |CP| | |#1 CPptS5:*sail®/N|CPpt6: "boat"/N|

"bus shelter*|CP|||#1 | | |cPPt5: "bus*/N |CPpt6: "shelter" /N|
"acquire” |V|Number| [$3]|"acquire"||syn: *take" /V]|

"air" |N|plur, have||#7[|"air" [homonym:

"heir"/N|syn:"oxygen" /N[|inact_verb: "breathe" /V]|

"ant" |[N|Number||$2] | |homonym: "aunt*"/N|

"arrive at"|V|Number||$2]||"arrive

at"||syn: "reach"/V|"arrive"|"at" |

"aunt" |N|Number| {$2] | "aunt " |homonym:
"ant"/N|syn:"relation”/N|per_or_animal:
"relation”/N|inact_verb:"visit"/V|

"bag" | N|Number,

have, location| [$2]| | "bag®||syn: "sack"/N| |inact_verb:
"carry"/V|prep_assoc:"in"/PREP |

"banker" |N|Number| [$2]| | "banker" |

"bare" |ADJ| | |#1| | |homonym: "bear"/N|
"barren" [ADJ| | |#1|| |homonym: *baron"/N]|

"baron" |[N|Number| |$2| | "baron” |homonym:
“barren"/ADJ|syn: “lord"/N|{per_or_animal: *lord" /N|
"baseball player" |N|Number||$10]|]||]|]|"baseball"|"player*" |
"base" |[N|Number, location||[$2]||"base"|homonym:
"bass"/N|syn:“"station"/N|per_or_animal: "baseball
player®/N| |prep_assoc: "on"/PREP|
"basement " |N{Number, location||$2]||"basement" |
"bass" |N|Number| |$5] | "bass" |homonym:

"base”/N|syn:"vocalist"/N|per_or_animal:*"vocalist"/N||inact_verb:

*hear" /V
"bazaar" |N{Number||$2| | "bazaar" |

"beech" |N|Number| |[$4| | |homonym: "beach®/N|
"beach" |[N|Number, location||$4]||"beach" |homonym:
"beech" /N|syn: "sandbank” /N|per_or_animal:
"lifeguard" /N| |prep_assoc: "on"/PREP|

"bear" |[N|Number| |$2| | "bear* | homonym:

"bare" |syn: "grizzly"|per_or_animal: "grizzly"|
"bear" |V|Number| |$3| | *bear" |

"beer" |[N|Number| |[$2]| | |homonym: *bier®/N|

87

"bier” |[N|Number, location||$2||"bier"|homonym:

"beer" /N|syn: "grave"/N|per_or_animal: “grave-
digger"/N|inact_verb: "visit"/V|prep_assoc:"in" /PREP|
"birth" |[N|Number| |$2]| | | homonym: *berth"/N|

"berth*® |N|Number,

location||$4| | "berth” |homonym: "birth*/N|syn: "bunk" /N|per_or_anima
l:"sailor"/N| |prep_assoc:"in" /PREP|

"board" |V|Number| | $3| | "board" | | syn: "get in*/V|

"boardwalk" |N|Number, location||[$2||*boardwalk" |

"boat" |N|Number, have,

location| |$2||*boat"| |syn:"ship"/N| |inact_verb:

"board" /V|prep_assoc:"on"/PREP|

"booth® |N|Number, location|[$2]|{"booth*|

"breathe" |V|Number| |$3| | "breathe” | |syn:*inhale®/V|

"bunk* |N|Number, location||$2]|"bunk"|

"burrow" |N|Number| | $2| | "burrow* |

"bus" |N|Number| |$4| | |homonym: *buss*/N|

"buss" |[N|Number| |$4| | "buss" | homonym:
"bus"/N|syn: "peck" /N|per_or_animal:

"lover" /N|inact_verb: "give" /V|

"butcher" |N|Number|{ [$2] | "butcher" |

"camp® |N|Number, have,
location||$2]||"camp” | |syn: "settlement"/N| |inact_verb: *arrive
at"/V|prep_assoc: "at"/PREP|

"capture” |V|Number| |$3]| | "capture” | |syn:*catch*/V]

"carol" |N|Number| |$2| | |homonym: “"carrel*/N|

"carrel” |N|Number, location||$4||"carrel® |homonym:

"carol" /N|syn: "booth" /N|per_or_animal: “student*”/N||prep_assoc:
"in"/PREP|

"carelessness" |N|Number| [$2] | "carelessness" |

"carry" |V|[Number| |$6| | "carry” | |syn: "hold"/V|

"cellar" |N|Number,

have, location||$2]| | "cellar" | |[syn: *basement"/N| |inact_verb:
"enter" /V|prep_assoc:"in"/PREP|

"certificate" |N|Number,
have||$2||"certificate”||syn:"diploma*/N| |inact_verb: "earn"/V|
"coral® |N|Number| |$2| | "coral* |homonym:

"choral"/ADJ|syn: |per_or_animal: "diver"/N|

"cereal" |[N|Number| |$2]| | "cereal® |homonym:

"serial"/ADJ|syn: |per_or_animal: "housewife"/N|

"charm" |V|Number|{ [$3 | | "charm" |

"chimney sweep" |[N|Number||$10|]||||*chimney” | "sweep" |
"choral" |ADJ| || #1| | |homonym: "coral*/N|

"cleaner” |[N|Number| [$2]| | "cleaner" |

"clef" |[N|Number|[$2||*clef"||syn:"musical sign"/N||inact_verb:
"look at"/V|

"climb® |V|Number| [$3| | "climb" | |syn: "scale" /V|

"cultivate” |V|Number||$3||"cultivate"||syn:"develop"/V|
"coalition” |N|Number||{$2||"coalition"|

"commit® [V|Number|[$3|] "commit® | |syn: "perform"/V|
"decrease" |V|Number| |$3| | "decrease" | |syn:"alleviate" /V|
"dock" |N|Number| | $2| | |homonym: "doc*®/N|

88

"doc" [N|Number| |$2| | "doc" | homonym:
“dock"fN]syn:"surgeon'/N{per_or_animal:'surgeon'/Nlinact_verb:'vi
sit"/V

"dig" |V|Number| |$3]||"dig" | | syn: "excavate*" /V|

"diploma" |N|Number||$2]|]|"diploma* |

"dire" |ADJ| | | #1] | |homonym: "dyer"/N|

"disco” |[N|Number, location||$2]|]|"disco”|

"diver® |N|Number| |$2]||"diver" |

"dual" |ADJ| | |#1| | |homonym: "duel"/N|

"duel” |N|Number| [$2] | "duel” | homonym:
"dual"/ADJ|syn:""|per_or_animal: “knight*/N|

"dyer" |[N|Number| [$2]| | "dyexr* |homonym: *"dire"/ADJ|syn:"textile
worker" /N|per_or_animal:"textile worker*/N|

"earn" |V|Number| |$3| | "earn” | |syn: *acquire* /V|

"enemy"” | N|Number, have|[$7]|"enemy"||syn:"foe"/N||inact_verb:
"hate” /V}

"energy" [Njplur| [$7] | "energy"
"enter"” |V|{Number| |$2| | "enter" | |syn:"go in"/V|
"erect” |V|Number| [$2| | "erect" | |syn: "build*/V|
"exotic dancer"” |N|Number||$10]]|]||]|"exotic*|*dancer"|
"father" |N|Number]| |$2| | “father" |
"fairy" |N|Number| |$4|| |homonym: *ferry"|

"ferry" |N|Number, location| |$4| | *ferry" |homonym: "fairy" /N|syn: "boa
t"/N|per_or_animal:"sailor" /N| |prep_assoc: "on" /PREP|

"first born" |N|Number||{$10|||||"first"|"born"|

"foe" |N|Number| |$2| | "foe" |

"force" |N|Number| |$2]| | "force" | |syn: *energy" /N| | inact_verb:
"harness" /V|

"foul® |ADJ| | |#1]|| |homonym: "fowl"/N|

"fowl" |[N|Number| |$2]|]|"fowl" |homonym:

"foul®/ADJ|syn: "pheasant"/N|per_or_animal: “pheasant"/N|
"fulfil" |V|Number||$3||"fulfil"||syn: "satisfy*"/V}

"garden® |N|Number, location]||$2]||"garden” |

"general" |N|Number| [$2| | "general" |

"give" |V|Number||$3| | "give" |

"go to"|V|Number| |#1||||syn:"visit*|"go"|"to"|

"godmother" |N|Number,

have|[$2| | "godmother" | |syn: "relation"/N||inact_verb: "visit"/V|
"gossip" [N|plur| |#7| | "gossip" |

"grain" [N|Number, have||$2]||"grain®||syn:"seed"/N||inact_verb:
"plant"/V|

"grate” |N|Number| |[$2]| | "grate” | homonym:

"great"/ADJ|syn:"" |per_or_animal: "chimney sweep"/N|

"grave" |N|Number, location||[$2]]|"grave"|
"grave-digger" |N|Number| |$10]|]| ||| "grave" | "digger" |
"great" |ADJ| | |#1] | |homonym: "grate"/N|

"grizzly" |N|Number||$7]| | "grizzly"|

"grossl® [ADJ| | |#7| | "gross" |homonym: "gross2®/N|

"gross2" |[N|{Number| |$7| | “gross" [homonym:

"grossl"/ADJ|syn:"" |per_or_animal: "butcher"/N|

"harness" |V|Number| |$4| | "harness*" | |syn: "use"/V|

"hate" |V|Number| |$3| | "hate" | | syn: "despise" /V|

"have" |V|Number| |$9]| ["have" |

"hear" |V|Number||{$3||"hear”||syn:"listen to"/V|

89

"heir" |N|Number||$4||*heir" |homonym: "air"/N|syn:"first
born"/N|per_or_animal: "first born"/N|inact_verb: *marry*/V|
"hero" |N|Number| |$5| | "hero* |

"hill" |N{Number,
have,location]||$2]|"hill" | |[syn:*mound*"/N| |inact_verb:
"climb" /V|prep_assoc:"on"/PREP|
"hoarse® |ADJ| | | #1] | | homonym: "horse"/N]|

"hole" |[N|Number, location||$2]||"hole"||syn: "burrow" /N
per_or_animal: "miner"/N|inact_verb: *dig*/vV]|

"home" |N|Number, location]||$2}|]|*home" |

"horse" |N|Number| |[$2| | "horse* |homonym:

"hoarse" /ADJ|syn:" " |per_or_animal: "pony"/N|
"hostile” |ADJ| | |#1| | |homonym: "hostel*"/N|

"hostel" |[N|Number||$2| | "hostel” |homonym:
"hostile"/ADJ|syn:""|per_or_animal: *"social worker"/N|
"housewife" |N|Number| |$2] | *housewife* |

"idle" |ADJ| | |#1| | | homonym: ®idol*"/N|

"idol" |N|Number| |$2||"idol" |homonym:

"idle"/ADJ|{syn:"" |per_or_animal: "priest"/N|
"individual* |N|Number| |$2]||*individual*" |

“join" |V|Number||$3||"join"||syn: "enter"/V|

"juvenile" [N|Number| |$2| ["juvenile*®|

"killer" |N|Number||$2||"killer"||syn: "murderer® /N||inact_verb:
"capture" /V|

"kiss" |V|Number| |$4]| | "kiss" |

"knight" [N|Number| |$2| ["knight* |homonym: "night*/N|syn: "hero* /N|pe
r_or_animal:"hero®/N|inact_verb:"kiss"/V|

"land" |N|Number, location,
have||$2]||"land" | |syn: "region*/N||inact_verb: "cultivate*/V|
"lifeguard" |[N|Number| |$2]| | "lifeguard" |

"lion" |N|Number| |$2||"lion*|

"listen to"|V|Number||$8||"listen
to"||syn:"obey"/V|"listen"|"to" |

"lone" |[ADJ| | | #1| | |homonym: "loan"/N]

“loan" |N|Number| |$2| | "loan" |homonym:

"lone"/ADJ|syn:"" |per_or_animal: "banker"/N|

"look at"|V|Number| |$8|]|"look at*||syn:*read”/V|"look"|*at"|
“lord* |N|Number] |$2]| | "lord" |

"love" |V|{Number| |$3||"love" | |syn: "cherish"/V|

"lover" |N|Number| |$2] | "lover" |

"main® |ADJ| | [#1] | |homonym: "mane®/N|

*majorl” |ADJ| ||$2]| | "major" |homonym: *major2"/N|

"major2" |[N|Number||$2|| "major" |homonym:

"majorl”/ADJ|syn: "general"/N|per_or_animal: "general®/N|
"mail” |[N|plur||#1|| |homonym: "male"/N|

"male" |N{Number||$2||"male" |homonym:
"mail"/N|syn:"man"/N|per_or_animal: *"man"/N|inact_verb: "charm"/V|
"man® |N|Number| |$2] | *man* |

"mane*® |N|Number| | $2| | "mane" | homonym:

"main® /ADJ|syn:"" |per_or_animal: *"lion"/N|

"marry" |V|Number| [$6] | "marry" |

"miner" |N|Number| |$2]| | *miner" |

"minorl” |ADJ| | |#7]| | *minor" |homonym: "minor2"/N|

"minor2* |N|Number| |$2| | *minor* {homonym:

"minorl” /ADJ|syn:"juvenile"/N|per_or_animal: *juvenile™/N|

"mound" [N|Number, location||$2}|*mound* |

"murderer" |N|Number| | $2] | *murderer" |

"musical sign" |N|Number||$10]|||| | "musical"|"sign"|

"naval® |ADJ| | |#1| | |homonym: *"navel"/N|

"navel" |N|Number| |$2| | "navel" | homonym:

"barren" /ADJ|syn:"" |per_or_animal: “"exotic dancer®"/N|

"need" |N|Number,

have| |$3| | "need" | [syn:"requirement*”/N| |inact_verb: "fulfil"/V|
"negligence" |N|Number| [$2]| | "negligence*® | | syn: "carelessness"/N| |in
act_verb: "commit*/V|

*night" |[N|Number||$2] | |homonym: *knight*/N}

"operation" |N|Number||$2| | "operation*|

“oxygen" [N|plur||$2| | *oxygen" |

"ownership" |N|Number,

have| |$2| | "ownership" | |syn: "possession" /N| |inact_verb:
"acquire" /V|

"pale” |ADJ| | |#1| | |homonym: “pail*/N]|

"pail” |N|Number||$2| | “pail" |homonym:

"pale" /ADJ|syn:"" |per_or_animal: ®"cleaner®/N|

"parent " |[N|Number,

have|[$2| | "parent"||syn:“father"/N||inact_verb: "listen to"/V|
"peck" |N|Number| |$2| | "peck* |

"peer® |N|Number| |$2| | |homonym: "pier"/N|

"pier" |N|Number, location||$4}|"pier" |homonym:

"peer”" /N|syn: "boardwalk"” /N|per_or_animal: "sailor"*/N||prep_assoc:
"on"/PREP|
"perform" |V|Number| [$3| | "perform” | |syn:"do"/V|

"person” |N|Number| |$2| | "person” | |syn:"individual”/N| | inact_verb:
"love"/V
"pheasant" |N|Number| |$2]| | "pheasant"” |

"plant” [V|Number||[$3| | "plant” | |syn:"cultivate" /V]|

"poet” |N|Number| |$2| | "poet” | |syn: "writer"/N||inact_verb:

"study" /V|

"pony"* |N|Number| |$7| | "pony" |

"possession® |[N|Number||$2}| | *possession"|

"pressure" |[N|Number| |$2] | "pressure" | |syn: "stress" /N| |inact_verb:
"bear" /V|

"prevent " |V|Number| |$3| [*prevent" | |syn: "stop"/V|

"priest" |N|Number||$2]||"priest®|

"region" |N|Number||$2]|"region" |

"relation" |N|Number||$2||"relation"|

"requirement" |N|Number| |$2| | "requirement" |

"rumour" |N|Number| |$2]| | "rumour" | | syn: "gossip*"/N| |inact_verb:
"prevent® /V|

"sack" |[N[Number, location]||[$2]|"sack"|

"sail" |N|Number||$2| | |homonym: "sale"/N|

"sailor" |N|Number]|$2||*sailor" |

"sale" |N|Number||$2||*sale" | homonym:
"sail"/N|syn:"bazaar"/N|per_or_animal: "store-

keeper" /N|inact_verb: "have" /V|

"sandbank" |N|Number, location||$2]||"sandbank" |

"seed" |[N|Number| |$2]| | "seed" |

91

"serial® [ADJ| | |#1| | |homonym: "cereal"/N|
"settlement” |N|Number, location||$2]|"settlement" |

"shelter"
location|
"erect"/V

N |Number, have,
$2||“shelter"||syn: "home*/N| | inact_verb:
prep_assoc:"in"/PREP|

"ship" |[N|Number, location,

have| |$2]| | "ship”||syn:"boat"/N| |inact_verb: *board"/V|prep_assoc:
"on" /PREP

"shrub" [N|Number| |[$2]| | *shrub"” |

"singing® [N|plur||$2||"singing" | |syn:"wailing"/N||inact_verb:
"hear" /V|

"social worker" |N|Number|[$10[|][]|*social"|"worker" |

"society"
have| [$7]
“speak” |V
"station”

N |Number,

"society" | |syn:"coalition"/N||inact_verb: "join"/V]|
Number| [$3 || “speak” | | syn: "articulate*® /V]|

N|Number, location||$2]|"station*|

"store-keeper" |N|Number|[$10]| ||| | "store" | *keeper" |
"stress" |N|plur||$5||"stress" |

"student"
"study" |V
"surgeon"
"surgery"”
have| |$7|

N|Number| |[$2| | "student* |

Number| [$6] | "study*” | [syn: "analyze" /V|
N|Number| | $2| | "surgeon* |

N |Number,

"surgery" | | syn: "operation"/N| |inact_verb: "perform"/V|

"tree” |N|Number, location,

have| |$2] | "tree" | |syn: "shrub"/N||inact_verb: "plant*/V|
"truth” |[N|Number, have||[$2]|"truth"||syn:"verity"/N||inact_verb:
"speak"®" /V

"textile worker" |N|[Number||$10|]|]|]||"textile"|"worker" |

"use" |V|Number| [$3| | "use" | |syn: "practise" /V|
"verity" |N|Number||$7||"verity"|

"visit* |V|

Number | [$3| ["visit"||syn: *meet with"/V]|

"vocal chord” |N|Number||[$10]|]|]|"vocal*|*"chord" |
"vocalist" |N|Number| |$2]|"vocalist" |

"voice" |N|Number, have||[$2|]|*"voice"||syn: "vocal
chord"/N| |inact_verb: *use"/V|

"wailing" [N|plur||$2]|]|"wailing" |

"whole" |ADJ| | [#1] | | homonym:

"hole" /N|

"writer" |[N[Number||$2||"writer" |
"yard" |N|Number, have,

location] |

$2||"yard"||syn:"garden*®/N| | inact_verb:

"dig"/V|prep_assoc: "in"/PREP/|

Morphology Rules

{Scme morphology rules for nouns and verbs}

rule 2

{Nouns like "book" whose plural forms require an "s*}
sing : #7;

plur : #7 + °s";

%

rule 3

{Verbs like "run", 3rd person present}
sing : #7 + "s";

plur : #7;

%

rule 4
{Verbs like “trespass" become "trespasses®}
sing : #7 + "es";

plur : #7;

%

rule 5

{Nouns like "bus" become "buses"}
sing : #7;

plur : #7 + "es*®;

%

rule 6

{Verbs like "study" become "studies"}
sing : #7-+"ies";

plur : #7;

%

rule 7
{Nouns like "surgery" become "surgeries"}

93

sing : #7;
plur : #7-+"ies";

rule 8

{For two word verb phrase like *listen to" become "listens to"
when 3rd person sing}

sing : #10 + "s"™ + #11;

plur : #10 + #11;

rule 9

{For verbs like "have" become "has" for 3rd person sing)
sing : #7--+"s";

plur : #7;

%

rule 10

{For compound nouns like "charley horse" become "charley horses"}
sing : #1;

plur : #10 + #11 + "sg";

%

rule 13

{this rule decides if the indefinite article “a* becomes ®“an~”}
l=“a*”|1=“e*"|l=“i*"|l=“o*"[l=“u*' : #7 + *n~*;

* : #7;

%

Attributes

Number (sing, plur)
Semantics {location,
%

Terminals

<20
g

PUNCT
PROP
PRON
PREP

have}

95

Appendix B - The implemented schemata

{This is algorithm 6b which deals with adj-noun or noun-noun cps

-the adjective or the first noun is the homonym

}

BASE=CP %

ROOT = MAKEPIVOT: BASE %

MAKEPIVOT = TRANSFORMATION

CP:
ART/"The"

1/@11:CPpt4/@8:homonym/@ 10:per_or_animal(sing]

1/@13:CPpt6/@ 1 L:inact_verb[sing]
ART/"a"

1/@13:CPpt6/@9:syn

PUNCT/"A"

ART/"A"
1/@11:CPpt4/@8:homonym
1/@13:CPpt6

PUNCT/"A"

%

{The}
{diver}
{joins}

{a}
{coalition }

{-1

{A}
{coral}
{society}

{-}

{ This is algorithm 7 which deals with adj-noun or noun-noun cps

-the adjective or the first noun has a noun homonym which is a

location. }

BASE=CP %

ROOT = MAKEPIVOT: BASE %

MAKEPIVOT = TRANSFORMATION

CP:

PROP/"John"

1/@13:CPpt6/@ 1 1:inact_verb(sing]

ART/"a"

1/@13:CPpt6/@9:syn
1/@12:CPpt5/@8:homonym/@ 12:prep_assoc
ART/"the"
1/@12:CPpt5/@8:homonym/@9:syn{location]
PUNCT/"A."

ART/"A"

1/@12:CPpt5/@8:homonym

1/@13:CPpt6

{John}
{plants}
{a}
{shrub}
{on}
{the}
{shore}
{-]

{A
{beach)
{tree}

PUNCT/"A." {-}
%

{This is algorithm 8 which deals with adj-noun or noun-noun cps
-the adjective or the first noun has a noun homonym. The last
word in the phrase is a location. }

BASE=CP %

ROOT = MAKEPIVOT: BASE %

MAKEPIVOT = TRANSFORMATION

CP:

PROP/"Joan" {John}
1/@ 12:CPpt5/@8:homonym/@ | 1:inact_verb(sing] {has}
ART/a" {a}
1/@12:CPpt5/@8:homonym/@9:syn {bazaar}
1/@13:CPpt6/@ 1 2:prep_assoc {on}
ART/"the" {the}
i/@13:CPpt6/@9:syn(location] {ship}
PUNCT/"A" {-}
ART/"A" {A
1/@12:CPpt5/@8:homonym {sale}
1/@13:CPpt6 {boat}

PUNCT/"A." {.}
o

Appendix C - The generated jokes

6b jokes:

The lord cultivates a region. A baron land.

The grizzly speaks a verity. A bear truth.

The housewife captures a murderer. A cereal killer.
The diver joins a coalition. A coral society.

The textile worker fulfils a requirement. A dyer need.
The knight acquires a possession. A duel ownership.
The pheasant breathes oxygen. Fowl air.

The butcher commits a carelessness. A gross negligence.
The chimney-sweep digs a burrow. A grate hole.
The pony uses a vocal chord. A horse voice.

The miner plants a seed. A hole grain.

The social worker hates a foe. A hostel enemy.

The priest prevents a gossip. An idol rumour.

The banker listens to a father. A loan parent.

The lion harnesses energy. Mane force.

The general performs an operation. A major surgery.
The juvenile studies a writer. A minor poet.

The exotic dancer boards a boat. A navel ship.

The cleaner loves an individual. A pail person.

The baseball player looks at a musical sign. A base clef.
The lifeguard plants a shrub. A beach tree.

The sailor earns a diploma. A berth certificate.

The student hears wailing. Carrel singing.

The sailor visits a relation. A ferry godmother.

The sailor bears stress. Pier pressure.

The first born carries a sack. A heir bag.

The relation climbs a mound. An aunt hill.

The vocalist arrives at a settlement. A bass camp.
The grave digger enters a basement. A bier cellar.
The lover erects a home. A buss shelter.

The surgeon digs a garden. A doc yard.

The hero goes to a disco. A knight club.

The man carries a sack. A male bag.

The store keeper boards a ship. A sale boat.

Algorithm #7
Joan hates a foe in the hotel. A hostel enemy.

Joan looks at a musical sign on the station. A base clef.
Joan plants a shrub on the sandbank. A beach tree.
Joan earns a diploma in the bunk. A berth certificate.
Joan hears wailing in the booth. Carrel singing.

Joan visits a relation on the boat. A ferry godmother.
Joan bears stress on the boardwalk. Pier pressure.

97

Algorithm #8
Joan marries a first born in the sack. A heir bag.

Joan visits a relation on the mound. An aunt hill.

Joan hears a vocalist at the settiement. A bass camp.

Joan visits a grave in the basement. A bier cellar.
Joan gives a peck in the home. A buss shelter.
Joan visits a surgeon in the garden. A doc yard.
Joan kisses a hero at the disco. A knight club.
Joan charms a man in the sack. A male bag.

Joan has a bazaar on the ship. A sale boat.

98

Appendix D - A sample questionnaire

10.

11,

12.

13.

14.

15.

16.

17.

18.

Please rate the following using this scale:

1. Not a joke. Does not make sense.

2. Recognizably a joke but a pathetic one.
3. OK. A child might like it.

4. Quite good.

5. Really good.

The ford cultivates a region. A baron land.

Joan hates a foe in the hotel. A hostel enemy.

The grizzly speaks a verity. A bear truth.

Joan looks at a musical sign on the station. A base clef.
The housewife captures a murderer. A cereal killer.
The diver joins a coalition. A coral society.

Joan plants a shrub on the sandbank. A beach tree.

The textile worker fulfils a requirement. A dyer need.
Joan earns a diploma in the bunk. A berth certificate.
The knight acquires a possession. A duel ownership.
The pheasant breathes oxygen. Fowl air.

Joan hears wailing in a booth. Carrel singing.

The butcher commits a carelessness. A gross negligence.
The chimney-sweep digs a burrow. A grate hole.

Joan visits a relation on the boat. A ferry godmother.
The pony uses a vocal chord. A horse voice.

The miner plants a seed. A hole grain.

Joan bears stress on the boardwalk. Pier pressure.

19. The social worker hates a foe. A hostel enemy.
20. The priest prevents gossip. An idol rumor.

21. Joan marries a first bom in the sack. An heir bag.
22. The banker listens to a father. A loan parent.

23. The lion harmesses energy. Mane force.

24. The general performs an operation. A major surgery.

25. The juvenile studies a writer. A minor poet.

100

Please rate the following using this scale:

101

1. Not a joke. Does not make sense.

2. A joke but a pathetic one.

3. OK. A child might like it.

4. Quite good.

5. Really good.

1. The exotic dancer boards a boat. A navel ship.

2. Joan visits a relation on the mound. An aunt hill.
3. The cleaner loves an individual. A pail person.

4. Joan hears a vocalist at the settlement. A bass camp.
S. The baseball player looks at a musical sign. A base clef.
6. Joan visits a grave in the basement. A bier cellar.
7. The lifeguard plants a shrub. A beach tree.

8. The sailor eamns a diploma. A berth certificate.

9. Joan gives a peck in the home. A buss shelter.

10. The student hears wailing. Carrel singing.

11. Joan kisses a hero at the disco. A knight club.

12. The sailor visits a relation. A ferry godmother.
13. Joan visits a surgeon in the garden. A doc yard.
14. The sailor bears a stress. Pier pressure.

1S. Joan charms a man in the sack. A male bag.

16. The first-born carries a sack. An heir bag.

17. The relation climbs a mound. An aunt hill.

18. The vocalist arrives at a settlement. A bass camp.
19. The grave digger enters a basement. A bier cellar.

20. The lover erects a home. A buss shelter.
21. Joan has a bazaar on the ship. A sale boat.
22. The surgeon digs a garden. A doc yard.
23. A hero goes to a disco. A knight club.

24. A man carries a sack. A male bag.

25. A store keeper boards a ship. A sale boat.

102

Appendix E - The jokes’ scores.

103

Joke # The joke Scores Average |
1 The lord cultivates a region. A baron land. 4444242 34
2 Joan hates a foe in the hotel. A hostel enemy. 5242244 33
3 The grizzly speaks a verity. A bear truth. 2223453 3
4 Joan looks at a musical sign on the station. A base clef. 1211311 1.4
5 The housewife captures a murderer. A cereal killer. 1122121 1.4
6 The diver joins a coalition. A coral society. 5224331 29
7 Joan plants a shrub on the sandbank. A beach tree. 5332332 3
8 The textile worker fulfils a requirement. A dyer need. 5443552 4
9 Joan earns a diploma in the bunk. A berth certificate. §331231 2.6
10 The knight acquires a possession. A duel ownership. 5145211 2.7
11 The pheasant breathes oxygen. Fowl air. 4355353 4
12 Joan hears wailing in a booth. Carrel singing. 4212244 2.7
13 The butcher commits a carelessness. A gross negligence. | 1123511 2
14 The chimney-sweep digs a burrow. A grate hole. 2142211 1.9
15 Joan visits a relation on the boat. A ferry godmother. 4432453 3.6
16 The pony uses a vocal chord. A horse voice. 2423343 3
17 The miner plants a seed. A hole grain. 1233332 24
18 Joan bears stress on the boardwalk. Pier pressure. 5534254 4
19 The social worker hates a foe. A hostel enemy. 3242111 2

20 The priest prevents gossip. An idol rumor. 4352412 3

21 Joan marries a first born in the sack. An heir bag. 5245411 3.1
22 The banker listens 1o a father. A loan parent. 4214431 2.7
23 The lion harnesses energy. Mane force. 5443411 3.1
24 The general performs an operation. A major surgery. 5445451 4

25 The juvenile studies a writer. A minor poet. 4444442 3.7
26 The exotic dancer boards a boat. A navel ship. 22444232 29
27 Joan visits a relation on the mound. An aunt hill. 22233343 2.8
28 The cleaner loves an individual. A pail person. 11441221 2

29 Joan hears a vocalist at the settlement. A bass camp. 12232133 2.1
30 The baseball player looks at a musical sign. A baseclef. 121222342 2.3
31 Joan visits a grave in the basement. A bier cellar. 11323212 1.9
32 The lifeguard plants a shrub. A beach tree. 34533423 34
33 The sailor earns a diploma. A berth certificate. 22444445 3.6
34 Joan gives a peck in the home. A buss shelter. 11512112 1.8
35 The student hears wailing. Carrel singing. 11132354 2.5

104

36 Joan kisses a hero at the disco. A knight club. 44553355 4.3
37 The sailor visits a relation. A ferry godmother. 33544444 39
38 Joan visits a surgeon in the garden. A doc yard. 23433434 33
39 The sailor bears a stress. Pier pressure. 44544545 4.4
40 Joan charms a man in the sack. A male bag. 21153232 24
41 The first-born carries a sack. An heir bag. 21512244 2.5
42 The relation climbs a mound. An aunt hill. 11222133 19
43 The vocalist arrives at a sertlement. A bass camp. 22222132 2

44 The grave digger enters a basement. A bier cellar. 11323112 1.8
45 The lover erects a home. A buss shelter. 11514112 2

46 Joan has a bazaar on the ship. A sale boat. 44524443 38
47 The surgeon digs a garden. A doc yard. 12134133 2.3
48 The hero goes to a disco. A knight club. 42544124 33
49 The man carries a sack. A male bag. 11532441 2.6
50 The store keeper boards a ship. A sale boat. 22322443 2.8

