
1

Reverse engineering the Blade family of drones

Chris Venour, March 2018

Introduction

This document is the second part of a three-part series about how to reverse engineer a Blade

transmitter so that members of the Blade family of drones, such as the Blade nano, 180QX or 200QX

models, can be controlled by a homemade transmitter, and ultimately by a computer. Part 1 described

how to ‘sniff’ or discover the digital signals coming into the antenna module of a Blade transmitter using

a logic analyzer. Part 2 (this document) describes how to build a homemade transmitter that uses these

digital signals to control a Blade drone. Part 3 explains how to connect a computer to the homemade

transmitter so that the drone can be controlled by machine learning algorithms running on a computer.

How a Blade transmitter controls a drone

A Blade transmitter has two joysticks which control the motion of a drone. These joysticks are

connected to potentiometers which adjust the voltage of a circuit. For instance, when a joystick is in the

down position, the voltage across that joystick’s potentiometer drops to 0. When the joystick is all the

way up, the voltage across the joystick is at its maximum (in this case 3.3 V). In this way, the voltage read

at a joystick represents that joystick's position.

A component in the transmitter measures the joystick voltages and converts them to digital values:

bytes ranging from 0 to 255. These bytes are then sent to the transmitter’s antenna module using the

Universal Asynchronous Receive and Transmit (UART) serial protocol. Radio waves corresponding to the

values of the bytes are sent from the antenna to the drone, thereby controlling its motion.

Digital commands that control the drone

As Part 1 explained, 'sniffing' or eavesdropping on the digital signals that a Blade transmitter sends to its

antenna module revealed that the drone is controlled by 14-byte commands that are sent to it every 21

ms. Figure 1 shows which parts of the 14-byte command control the throttle (the amount of power sent

to the motors), roll (left/right movement), pitch (forward/backward movement) and yaw (rotation) of

the drone.

2

Figure 1. 14 byte commands control the flight of Blade drones.

As the figure demonstrates, pairs of bytes in the 14-byte command control the movement of the drone,

and the range of values these bytes can take on is provided here:

• The 1st and 2nd byte are the start of frame bytes and they must equal 88 and 0 respectively.

• The 3rd and 4th byte control the throttle. No throttle is represented by the values 0 170, medium

throttle is 01 170 , and maximum throttle is 03 84.

• The 5th and 6th byte control the roll. Maximum roll to the left is 07 84, no roll is 05 255, and

maximum roll to the right is 04 170.

• The 7th and 8th byte determine the pitch. Maximum backwards pitch is 08 170, no pitch is 09

255 and maximum forwards pitch is 11 54.

• The 9th and 10th byte determine the yaw/rotation. Maximum rotation to the left is 15 84 , no

rotation is 13 255, and maximum rotation to the right is 12 170.

• The 11th, 12th , and 13th byte are ignored by the drone and can take on any value between 0 and

255.

• The 14th byte marks the end of the 14-byte command and it must equal 170.

The command shown in figure 1 applies medium throttle to the drone and the roll, pitch, and yaw are at

their neutral settings; that is, the drone is being instructed to simply hover.

To apply maximum throttle to the drone and to get it to make a hard left, for example, the

microcontroller would have to change the 3rd and 4th bytes in figure 1 to 03 and 84 (maximum throttle),

change the 5th and 6th bytes to 07 and 84 (maximum roll to the left), and leave the values of all the other

bytes in the figure unchanged.

3

Components of the homemade transmitter

The homemade transmitter, shown in figure 2, consists of components that sit on a half-size

breadboard. The transmitter is small – it fits in the palm of your hand – and is powered by a small 3.7

volt lithium battery. Push-buttons, rather than joysticks, are used to control the drone’s movement and

a small potentiometer controls the throttle.

A brief description of each of the transmitter’s components is provided here:

Microcontroller (atmega328p): This component – the black chip at the bottom and middle of the

breadboard in figure 2 - has a processor that’s similar to a computer’s CPU. Software on the

microcontroller - a C program that I wrote on a computer and downloaded onto the microcontroller –

controls the behaviour of the homemade transmitter.

Antenna module: This module was desoldered from a Blade transmitter and appears in the top right

corner of the breadboard in figure 2. The 14-byte digital commands described earlier are sent from the

microcontroller to the antenna module. Radio waves corresponding to the values of a 14-byte command

are then generated and sent by the antenna module to the drone.

Serial connection: In figure 2, a yellow wire to the left of the microcontroller can be seen running from

the microcontroller to the antenna module. This wire connects the microcontroller’s TX (transmit) pin to

the antenna module’s RX (receive) pin. The microcontroller transmits the 14-byte commands over this

wire, one byte at a time, using the UART serial protocol.

16 MHz crystal: The microcontroller has an internal clock that can tick at 8 Mhz but this frequency isn’t

high enough to ensure that the 14-byte commands are sent to the antenna every 21 ms. Therefore, a 16

MHz external crystal, the silver component at the bottom left of the microcontroller, was added to the

circuit to improve the microcontroller’s timing accuracy.

Push-buttons: Two buttons control the drone's pitch (forward/backward movement) and two buttons

control the drone’s roll (left/right movement). These four buttons are electrically connected to four pins

on the microcontroller. Interrupt Service Routines (ISRs) running on the microcontroller listen for

changes on these pins. When the ‘left’ button, for example, is pressed, an ISR attached to a

microcontroller pin activates and increments the 5th and 6th byte of the 14-byte command. When the

microcontroller next sends the 14-byte command, the drone receives instructions to turn left.

Potentiometer: As explained earlier, the voltage output by a potentiometer can represent the direction

in which the drone should move. Similarly, the voltage across a potentiometer can symbolize how much

power to send to the drone’s motors (i.e. the throttle), and that’s the function performed by the

potentiometer in figure 2 – the white knob in the top left corner of the breadboard.

Battery: A 3.7 volt battery provides power to the components on the breadboard.

4

Figure 2. The transmitter built for this project fits on a small breadboard that's the size of a credit card

Programming the transmitter

The homemade transmitter's software consists of a C program that I've written and downloaded onto

the microcontroller. The first thing the microcontroller does when it's turned on is run some

initialization code which modifies certain bits in some of the microcontroller's registers. The bits in these

registers control the behaviour of various hardware peripherals that are built into the microcontroller.

For example, the microcontroller's Analog to Digital Converter (ADC) needs to be activated so that the

voltage output by the potentiometer, which is acting as the throttle in this project, can be measured and

converted to digital form. Similarly, special serial communication hardware built into the microcontroller

needs to be initialized and activated so that the microcontroller can communicate with devices in the

outside world, such as this project's external antenna module.

Once some of the microcontroller's internal peripherals have been activated and their behaviour

defined, the C program sends a command to bind with the drone. Like the 14-byte commands that

control the drone, the bind message was discovered using a logical analyzer, and it too consists of 14

bytes which need to be sent to the drone every 21 ms. To bind properly with the drone, the transmitter

needs to send the the bind message to the antenna module (over the serial line) for at least two seconds

when the drone is turned on.

When the homemade transmitter has successfully bound with the drone, the C program enters an

infinite loop in which the microcontroller sends 14-byte control commands to the antenna module every

21 ms. When someone pushes a button on the breadboard or turns the potentiometer/throttle,

Interrupt Service Routines (ISRs) defined in the C program are activated. These ISRs modify the bytes in

the 14-byte command that gets sent to the drone, and in this way the drone’s motion is controlled.

