
1

A tutorial for simplenlg (version 3.7)

Tutorial by Chris Venour

simplenlg library by Ehud Reiter

May 28 2008

2

Table of Contents

Section I - What is simplenlg? .. 3
Section II –Who uses simplenlg? .. 4
Section III - Getting started ... 5
Section IV – Generating words ... 7
Section V – Generating a simple sentence .. 9
Section VI - Verbs ... 10
Section VII – What are complements? ... 12
Section VIII -Adding multiple subjects and complements ... 13
Section IX – Adding adjectives via ‘modifier’ ... 14
Section X – Prepositional phrases ... 15
Section XI – Adding adverbs .. 18
Section XII – Modifiers vs complements ... 19
Section XIII – Different ways of specifying a phrase ... 20
Section XIV- Generating a sentence with multiple clauses .. 21
Section XV - Generating paragraphs (TextSpec) ... 23
Section XVI - Generating a paragraph with strings, SPhraseSpecs and TextSpecs 24
Appendix A – NLG and simplenlg ... 25
Appendix B – simplenlg web pages .. 28
Appendix C – simplenlg and Eclipse .. 29

3

Section I - What is simplenlg?

simplenlg can be used to help you write a program which generates grammatically correct
English sentences. It’s a library (not an application), written in Java, which performs
simple and useful tasks that are necessary for natural language generation.

Because it’s a library, you will need to write your own Java program which makes use of
simplenlg classes. These classes will allow you, for example, to specify the subject of a
sentence (‘my dog’), the exact verb you want to appear in the sentence (‘chase’) and the
object (‘George’). You might also make use of simplenlg methods to indicate that you
would like the verb to be in the past tense and expressed in the progressive form.

Once you have stipulated what the content of your sentence will be and expressed this
information in simplenlg terms, simplenlg can assemble the parts of your sentence into a
grammatical form and output the result. In our example, the resulting output would be
“My dog was chasing George”. Here, simplenlg has

• capitalized the first letter of the sentence
• added the auxiliary ‘was’ and made it agree with the subject
• added ‘-ing’ to the end of the verb (because the progressive aspect of the

verb is desired)
• put all the words together in a grammatical form
• inserted the appropriate whitespace between the words of the sentence
• put a period at the end of the sentence.

As you can see, simplenlg will not choose particular words for you: you will need to
specify almost entirely the exact words you want to appear in the output and their parts of
speech. What simplenlg’s library of classes will do for you is create a grammatically
correct sentence from the parts of speech you have provided it with. simplenlg automates
some of the more mundane tasks that all natural language generation (NLG) systems
need to perform. (For more information on NLG, see Appendix A). Tasks such as:

orthography
• inserting appropriate whitespace in sentences and paragraphs

• absorbing punctuation. For example, generating the sentence “He lives in

Washington D.C.” instead of “He lives in Washington D.C.."
(i.e. the sentence ends with a single period rather than two).

• pouring. Inserting line breaks between words (rather than in the middle of a word) in

order to fit text into rows of, for example, 80 characters (or whatever length you
choose).

• formatting lists such as "apples, pears and oranges"

4

morphology
handling inflected forms. (Inflection is the modification or marking of a
word/lexeme to reflect grammatical information such as gender, tense, number or
person).

simple grammar
• ensuring grammatical correctness by, among other things, enforcing noun-verb

agreement1

• creating well-formed verb groups (i.e. verb plus auxiliaries) such as “does not
like”

• allowing the user to define parts of a sentence or phrase and having simplenlg gather

those parts together into an appropriate syntactic structure

For those familiar with the terminology of natural language generation (NLG), simplenlg
is a realiser for a simple grammar. We hope that simplenlg will eventually provide simple
algorithms for not only realization but all of microplanning as well. As its functionality
expands over time, components such as microplanning will be added as self-contained
modules: self-contained, in order to allow students and researchers use of parts of the
library they want, with the freedom to extend or replace other modules with their own
implementations.

Section II –Who uses simplenlg?

Some of the people who will want to use the simplenlg library will be:

• Researchers who are concentrating on their own implementations of document
planning or microplanning and who don’t want to be bothered with the automatic
and mundane tasks of realization.

• Students who want to learn more about natural language generation.

• Anyone who wants to write programs that can generate English sentences.

1agreement describes how a word’s form sometimes depends on other words that appear with it in a
sentence. For example you don’t say "I is" in English, because "is" cannot be used when the subject is "I".
The word "is" is said not to agree with the word "I". The correct form is "I am", even though the verb still
has the same function and basic meaning.

5

Section III - Getting started3

It’s important to note that simplenlg is a library4, not an application! This means you
cannot run it as a Java program – it does not have a “main” method. You need to create
your own Java program which makes use of simplenlg classes and methods.

To enable your program to make use of the simplenlg library, you’ll need to

• download a zip file of the library from the simplenlg website (see Appendix B

for the URL).
• unload that zip file and add simplenlg’s jar file to your program’s build path

(For instructions on how to do this in Eclipse, see Appendix C).
• create a new Java class which has the main method in it. In this example, let’s

call the new class TestMain.
• at the top of that class, put in the following import statements:

import simplenlg.features.*;
import simplenlg.realiser.*;

Following these steps, you should have code that looks like the following:

import simplenlg.features.*;
import simplenlg.realiser.*;

public class TestMain {
 public static void main(String[] args){

 }
}

Figure 1: A Java class which is ready to make use of the simplenlg library

You’re now ready to make use of simplenlg to generate sentences!

3 Note that this and other sections assume a basic understanding of object oriented programming on the part
of the reader. For example, you will need to understand what a class and an instance of a class are.
4 A library or API is a collection of methods/functions that people can make use of in their programs. This
saves programmers from having to write that code themselves.

6

The main steps involved in generating a sentence:

Importing the simplenlg library into your Java program provides that program with
classes that allow you to specify the parts of speech of a sentence. The idea of ‘what a
sentence is’ is captured in the simplenlg class called SPhraseSpec; the idea of a ‘noun
phrase’ is represented by the class NPPhraseSpec and the notion of ‘prepositional
phrase’ is represented by the class PPPhraseSpec5. In order to build a sentence with
these simplenlg concepts or classes, you will normally follow these steps:

• create an instance of SPhraseSpec. (This represents our sentence).
• create instances of various other parts of speech (using NPPhraseSpec or

PPPhraseSpec for instance).
• indicate what role these various parts of speech will play in the desired

SPhraseSpec sentence. For example, specify that you want a particular noun
phrase to be the subject of the SPhraseSpec sentence, and some other noun
phrase to be the object.

• specify what the verb of SPhraseSpec will be.
• create a simplenlg object called the Realiser.
• ask the Realiser to ‘realise’ or transform the SPhraseSpec instance into a

syntactically correct string.

5 simplenlg has no concept of two other important phrase types: adjective phrases and adverb phrases.
These parts of speech are generated in another way, using the simplenlg concept of modifier. See section
IX for details.

7

You now have a string which is a grammatical English phrase or sentence and it can be
treated like any other Java string. For instance you can manipulate it further or print it out
using the Java method System.out.println().

It’s important to note that you only need to create the Realiser once. i.e. you don’t need
to create it for every sentence you generate. So a good idea is to create a single realiser at
the start of your program and feed it various sentence specifications over the lifetime of
the program run.

See Section V for an example of the actual Java code used to generate a sentence.

Section IV – Generating words (Lexicon)

Like other natural language processing systems, simplenlg needs information about
words; this is called a Lexicon. simplenlg comes with a simple lexicon built into the
system, which is used by default. It can also be accessed explicitly to find out different
forms of words, as below

import simplenlg.lexicon.Lexicon;
Lexicon lex = new Lexicon();

System.out.println(lex.getPlural("child"));
System.out.println(lex.getPast("eat"));
System.out.println(lex.getPastParticiple("eat"));
System.out.println(lex.getPresent3S("eat"));
System.out.println(lex.getPresentParticiple("eat"));
System.out.println(lex.getComparative("happy"));
System.out.println(lex.getSuperlative("happy"));

These statements will print out the following words:

children
ate
eaten
eats
eating
happier
happiest

8

simplenlg's built-in lexicon just contains information about word forms. simplenlg can
also access a lexicon that is held in an external database, which can contain much more
information about words. In particular, simplenlg can be used with a modified version of
the specialist lexicon developed for the National Institute of Health in the USA (see
http://specialist.nlm.nih.gov/ for more information about the specialist lexicon).

We are still developing this aspect of simplenlg. To use this lexicon, you must first load
it into a local database; we provide a MySQL version of the lexicon on the simplenlg
web page as lexicon.sql. Please contact your system administrator if you are not familiar
with MySQL.

When the database has been loaded, simplenlg can access by creating a lexicon class as
follows

Lexicon lex = new DBLexicon("com.mysql.jdbc.Driver",

"jdbc:mysql://localhost/lexicon",
"lexicon", "password");

The parameters to the DBLexicon call are the standard ones used to set up JDBC
databases in Java: the first is the driver, the second is the database location, the third is
the database username, and the fourth is the database password.

When the lexicon has been set up, you can retrieve information about particular words
using the getItem() method, and then get information about particular aspects of this
word. For example,

Noun mouse = (Noun) lex.getItem(Category.NOUN, "mouse");
System.out.println(mouse.getplural());
System.out.println(mouse.isCountNoun());

This will print out

mouse
true

The simplenlg lexicons do not contain information about semantic relations of a word.
For instance you can’t ask simplenlg to output a synonym of the word ‘happy’ because it
does not possess a lexicon with that kind of information in it.

10 last modified:5/28/2008

Section V – Generating a simple sentence

In the Java class TestMain shown above, we have the statement

import simplenlg.realiser.*;
import simplenlg.features.*;

These classes allow you to specify the parts of speech of a sentence and to perform
various operations on them. The idea of ‘what a sentence or phrase is’ is captured in the
simplenlg class called SPhraseSpec; the idea of a ‘noun phrase’ is represented by the
class NPPhraseSpec and the notion of ‘prepositional phrase’ is represented by the class
PPPhraseSpec. There are no classes defined for adjective phrases or adverb phrases in
simplenlg: these parts of speech are generated using something called a modifier which
is described in Section IX.

It’s important to note that simplenlg provides only a very simple grammar: its notions of
a sentence, noun phrase and prepositional phrase are very basic and are by no means
representative of the incredibly varied and complicated grammar of the English
language.

Let’s see how we would define and combine various parts of speech to generate a simple
sentence such as “My dog chases George”. We’ll make use of the simplenlg construct
SPhraseSpec which allows us to define a sentence or a clause in terms of its syntactic
constituents. This is useful because it allows us to hand different parts of a clause to
simplenlg, in no particular order, and simplenlg will assemble those parts into the
appropriate grammatical structure. Dividing a sentence into smaller parts and labeling
those parts, provides more flexibility because we can then reassemble components in
various ways.

SPhraseSpec p = new SPhraseSpec();
p.setSubject(“my dog”);
p.setVerb(“chase”);
p.addComplement(“George”);

The above set of calls to simplenlg defines the constituents or components of the sentence
we wish to construct: we have specified a subject, a verb and an object/complement
(simplenlg uses the term complement) for our sentence. Now, all that remains is to create
a ‘realiser’ which will take these different components of the sentence, combine them and
‘realise’ the text to make the result syntactically and morphologically correct:

Realiser r = new Realiser();
String output = r.realiseDocument(p);
System.out.println(output);

The resulting output is:

My dog chases George.

11 last modified:5/28/2008

When parts of speech are defined and assembled into an instance of the SPhraseSpec
class, methods associated with that class such as setSubject, setVerb and
addComplement, assemble the parts of speech by obeying the simple grammar
embodied in simplenlg7.

Section VI - Verbs

Verbs should be specified in infinitive (“to XXX”) form. However, as a convenience,
simplenlg will recognize inflected forms of “be” such as “am”. For example,

p.setVerb(“is”);
is equivalent to

p.setVerb(“be”);

You can specify particles (prepositions which accompany a verb) by writing the
following:

p.setVerb(“pick up”);
p.setVerb(“put down”);

Verbs in simplenlg can have one of three different tenses: past, present and future. Let’s
say we’ve written the following simplenlg code which yields the sentence “Mary chases
George”:

SPhraseSpec p = new SPhraseSpec();
p.setSubject(“Mary”);
p.setVerb(“chase”);
p.addComplement(“George”);

In order to set this in the past, we would add the line:

p.setTense(Tense.PAST);

thus rendering the sentence to:
Mary chased George.

If Mary is instead busy with other things and forced to postpone her exercise, we could
write

p.setTense(Tense.FUTURE);

7 And, as we will see later, rules of grammar will have also been enforced in building up the smaller
constituents of the sentence (such as NPPhraseSpec and PPPhraseSpec) to ensure they are well-formed.
Thus, the rules of grammar which simplenlg implements are not defined within a single module of the
simplenlg code but instead are spread throughout the various class definitions.

12 last modified:5/28/2008

yielding the sentence:
Mary will chase George.

Negation
If negated is set to true, the negative form of the sentence is produced. For example
adding the following line to the previous

p.setNegated(true);

will change the resulting sentence to
Mary will not chase George.

Questions
simplenlg can generate simple yes/no questions. For example

p.setSubject("Mary");
p.setVerb("chase");
p.addComplement("George");
p.setInterrogative(InterrogativeType.YES_NO);

will generate

Does Mary chase George?

simplenlg can also generate simple WH questions. For example

p.setSubject("Mary");
p.setVerb("chase");
p.setInterrogative(InterrogativeType.WHO, DiscourseFunction.SUBJECT);

will generate

Who does Mary chase?

13 last modified:5/28/2008

Section VII – What are complements?

In the previous example, the object of the verb is “George” and it’s called the
complement. So what is a complement exactly? As far as simplenlg is concerned, a
complement is anything that comes immediately after the verb. When you label
something as a complement and hand it to simplenlg to be realized, simplenlg will place
it, no matter what it is, after the verb8.

Examples of complements are underlined in the sentences below:

1. John ate an apple.
2. John is happy.
3. John wrote quickly.
4. John just realized that his holidays are over.

The underlined words and phrases in the examples above are all different parts of speech.
In example #1, the complement is a noun phrase; in example #2, it’s an adjective; in
example #3 an adverb and it’s a ‘that-clause’ in example #4. But from simplenlg’s point
of view, the underlined bits are none of these things: they are simply complements
because they all appear after the verb. Although it has a (very basic) understanding of
verbs, noun phrases and prepositional phrases, simplenlg has no concept of adjectives,
adverbs, that-clauses or other parts of speech that can appear after a verb. But it does
understand the concept of a complement and because of this, parts of speech which
appear after a verb can be generated using the simplenlg library.

Phrase Type Examples

Noun Phrase “an apple”

Prepositional Phrase “in the park”

Verb “chase”

Verb Phrase “play the piano”

Adjective Phrase “delighted to meet you”

Adverb Phrase “very quickly”

Table 1: Highlighted are the parts of speech that simplenlg can
explicitly handle. The concepts of adjective phrases and adverb

phrases, however, fall under the headers ‘complement’ or
‘modifier’.

8 Even if you label a nonsense string like “shabadoo” as a complement, simplenlg will happily add it after
the verb.

14 last modified:5/28/2008

Note that only things of type SPhraseSpec can take a complement.

Section VIII -Adding multiple subjects and complements

An SPhraseSpec can have multiple subjects and complements but not multiple verbs
(although a future version of simplenlg might include this functionality). Let’s say you
have a monkey that also wants to chase poor George. To add your monkey to the fray,
you would write:

p.addSubject(“your monkey”);

The resulting output is:

Mary and your monkey chase George.

simplenlg has automatically added the conjunction ‘and’ and has changed the ending of
the verb so that it agrees with the multiple subjects of the sentence.

Similarly, you can have multiple complements in an SPhraseSpec. Let’s suppose Mary
and the monkey have found more people to terrorize in what’s turning out to be a
growing parade of horror:

p.addComplement(“Joey”);
p.addComplement(“Martha”);

The resulting output will be:

Mary and your monkey chase George, Joey and Martha.

If you wish to combine subjects or complements with "or" instead of "and", you can do
this by creating a CoordinateNPPhraseSpec; this is described in the API

15 last modified:5/28/2008

Section IX – Adding adjectives via ‘modifier’

We know for a fact that George et al. don’t like to be chased, at least not on a full stomach,
so we’d like to assign Mary and the monkey a suitable adjective. The problem is that,
although simplenlg knows what noun phrases, verbs and prepositional phrases are, it has
no concept of what an adjective (or adverb are). But don’t worry! These parts of speech
can be still be generated by the simplenlg library – it just doesn’t label them as such.
Instead they are subsumed under the larger concept of modifier.

To deem Mary and the monkey ‘cruel’, however, you will no longer want to refer to them
simply as ‘subjects’ of the sentence. Instead let’s also define them as noun phrases (which
they are). In that way we can ascribe the adjective ‘cruel’ (which they certainly are) to
those noun phrases by means of the modifier function.

NPPhraseSpec subject1 = new NPPhraseSpec("Mary");
NPPhraseSpec subject2 = new NPPhraseSpec("your", "monkey")9;

Now, we can apply the adjective ‘cruel’ to these noun phrases by writing:

subject1.addModifier(“cruel”);
subject2.addModifier(“cruel”);

With the rest of the code in place (assuming that a Realiser r has been created already):

p.setSubject(subject1);
p.addSubject(subject2);
p.setVerb(“chase”);
p.addComplement(“George”);
p.addComplement(“Joey”);
p.addComplement(“Martha”);

String output = r.realiseDocument(p);
System.out.println(output);

The output will be:

Cruel Mary and your cruel monkey chase George, Joey
and Martha.

9 Note that we can also construct the noun phrase “your monkey” in the following way:
NPPhraseSpec subject2 = new NPPhraseSpec("monkey");
subject2.setDeterminer(“your”);

16 last modified:5/28/2008

Section X – Prepositional phrases

Our sentence is getting rather crowded with people and animals. So let’s return to the
pristine simplicity of Mary chasing George. But let’s give the heart-pounding action a
setting:

“Mary chases George in the park”.

The phrase “in the park” is a prepositional phrase and there are a number of ways we can
create it using simplenlg. The most simplistic way would be to simply label the string “in
the park” as a PPPhraseSpec and add it as a modifier of the sentence:

SPhraseSpec p = new SPhraseSpec(“Mary”, “chase”, “George”);
PPPhraseSpec pp = new PPPhraseSpec(“in", "the park”);
p.addModifier(pp);

A more sophisticated way of creating this prepositional phrase, however, would be to
specify the parts of the prepositional phrase – the preposition, determiner, noun phrase -
and combine them:

NPPhraseSpec place = new NPPhraseSpec("park");
place.setDeterminer("the");
PPPhraseSpec pp = new PPPhraseSpec();
pp.addComplement(place);
pp.setPreposition("in");

We then add the prepositional phrase as a modifier of the ‘Mary chases John’ sentence.

p.addModifier(pp);

The table below shows these two different ways of creating the prepositional phrase “in
the park”.

17 last modified:5/28/2008

more simplistic way of adding a
prepositional phrase

‘more sophisticated’ way

SPhraseSpec p = new
SPhraseSpec(“Mary”, “chase”, “George”);

PPPhraseSpec pp = new
PPPhraseSpec(“in", "the park”);
p.addModifier(pp);

SPhraseSpec p = new
SPhraseSpec(“Mary”, “chase”, “George”);

NPPhraseSpec place = new
NPPhraseSpec("park");
place.setDeterminer("the");
PPPhraseSpec pp = new
PPPhraseSpec();
pp.addComplement(place);
pp.setPreposition("in");
p.addModifier(pp);

Mary chases George in the park

Table 2: Two ways of adding the prepositional phrase ‘in the park’ to a sentence.

The more simplistic way requires less code than the second ‘more sophisticated’ way. So
why then would we ever choose the second method?

The main reason is that the second method allows you to add pieces to a phrase or
sentence with much greater ease. We have to remind ourselves that simplenlg will
normally be used in a larger program which chooses the content of a sentence – and that
content will likely be determined in a piecemeal fashion. It’s much easier to have
simplenlg add a word or clause to a phrase which has been defined in a modular way (i.e.
parts of the sentence are divided into chunks and labeled) rather than having to add new
information to a monolithic string whose parts are not differentiated. For example if we
wanted describe the park as ‘leafy’ and we had used the 2nd method to define our
sentence, all we would need to do is write the following code:

place.addModifier(“leafy”);

Had we chosen the first method, however, adding the adjective ‘leafy’ to the string ‘in the
park’ would be a major hassle. Among other things, you would have to write code which
could:

• find where to insert the new word in the string. In most cases this would require

parsing the string which is no easy task!
• break that string into pieces to allow the insertion
• insert the word

18 last modified:5/28/2008

• determine whether that insertion requires changing the other bits of string
• put the pieces of string back together in a grammatical way.

In other words, you would have to write a realiser like simplenlg!

So why, given the major drawback stated above, would we ever choose to define a
sentence using method #1? Because sometimes we simply want to generate canned
text i.e. text that we know won’t need to be enlarged or changed and which we simply
want output as is. If we know that we won’t be changing a phrase (such as ‘in the
park’), then it makes sense to treat it as a monolithic entity the way method #1 does.

19 last modified:5/28/2008

Section XI – Adding adverbs

Adverbs are specified as modifiers in an SPhraseSpec. For example, to output “John
quickly ran”, use

p.setSubject("John");
p.setVerb("run");
p.setModifier("quickly");
p.setTense(Tense.PAST);

20 last modified:5/28/2008

Section XII – Modifiers vs complements

There are four different kinds of phrase in simplenlg: noun phrases (which are
represented by the Java class NPPhraseSpec), clauses or full sentences (which are
represented by SPhraseSpec), prepositional phrases (represented by the class
PPPhraseSpec) and adjective phrases (which aren’t discussed here). Note that other parts
of speech such as adverb phrases are not explicitly handled by simplenlg but they can
certainly be generated using the simplenlg concepts of modifier and complement.

simplenlg in fact distinguishes between three types of modifiers: front modifiers (which
go at the beginning of a phrase), pre-modifiers (which go immediately before the main
noun or verb in a phrase), and post-modifiers (which go at the end of a phrase). You can
directly specify where a modifier goes by using addFrontModifier(),
addPreModifier(), or addPostModifier(). If you use the more general addModifier(),
then simplenlg will decide where to place your modifier.

Pre and post modifiers are allowed in all types of phrases. Front modifiers can only be
specified for SPhraseSpec.

20 last modified:5/28/2008

Section XIII – Different ways of specifying a phrase

There are numerous ways of specifying a phrase. The table below shows some of the
ways we can create the sentence ‘Mary chases George’. You can define all the
components of the phrase when you create an instance of it (as in example #1). Or you
can create the instance first and then add the components one at a time (as in example
#2). Alternatively, the components of a sentence can themselves be phrases (as in example
#3). Or you can have a combination of all these various syntaxes (as in examples 4-5).

1. SPhraseSpec p = new SPhraseSpec(“Mary”, “chase”, “George”);

2. SPhraseSpec p = new SPhraseSpec;
p.addSubject(“Mary”);
p.setVerb(“chase”);
p.addComplement(“George”);

3. NPPhraseSpec subj = new NPPhraseSpec("Mary");
NPPhraseSpec obj = new NPPhraseSpec("George");
SPhraseSpec p = new SPhraseSpec(subj, “chase”, obj);

4. NPPhraseSpec obj = new NPPhraseSpec("George");
SPhraseSpec p = new SPhraseSpec;

p.addSubject(“Mary”);
p.setVerb(“chase”);
p.addComplement(obj);

5. SPhraseSpec p = new SPhraseSpec(“Mary”, “chase”, new
NPPhraseSpec(“George”));

Table 4: different ways of creating the sentence “Mary chases George”.

21 last modified:5/28/2008

Section XIV- Generating a sentence with multiple clauses

You can generate a sentence with multiple clauses in two ways:
1. by using a simplenlg class called TextSpec
2. by nesting phrases within phrases

Lists of clauses

One way of generating a sentence with multiple clauses is to use the simplenlg class
TextSpec. TextSpec can be used to define single sentences and paragraphs. It consists of
a document structure (eg SENTENCE or PARAGRAPH) and a list of components which
are either SPhraseSpecs or smaller TextSpecs.

In the next section we will see how to create paragraphs with TextSpec but for now let’s
see how we can create a list of clauses which we want combined in a single sentence:

TextSpec t1 = new TextSpec("my cat likes fish", "my dog likes bones", "my
horse likes grass");

We can define the TextSpec instance t1 to be made up of a list of SPhraseSpecs in this
way or we can make use of the method addSpec and individually add each of them to t1:

SPhraseSpec s1 = new SPhraseSpec("my cat", "like", "fish");
SPhraseSpec s2 = new SPhraseSpec("my dog", "like", "bones");
SPhraseSpec s3 = new SPhraseSpec("my horse", "like", "grass");

TextSpec t1 = new TextSpec(); // create a TextSpec
t1.addSpec(s1);
t1.addSpec(s2);
t1.addSpec(s3);

If you do not supply a conjunction using the method setListConjunct, the conjunction
‘and’ will automatically be used because it is the default. In this case, the resulting
sentence would be:

My cat likes fish, my dog likes bones and my horse
likes grass.

If you do not want a conjunction to appear in the sentence, specify the empty string “” as
the list conjunct. For the t1 list specified above, you would write:

t1.setListConjunct(“”);

The resulting output would be:

My cat likes fish, my dog likes bones, my horse likes
grass.

22 last modified:5/28/2008

Subordinate clauses:

You can use the same TextSpec methods as the ones mentioned above to create a
sentence that has a main and subordinate clause. Note that the order in which you add
phrases to the TextSpec matters: that order indicates their left to right order in the
resulting text.

SPhraseSpec s1 = new SPhraseSpec("I", "be", "happy");
SPhraseSpec s2 = new SPhraseSpec("I", "eat", "fish");
s2.setCuePhrase("because");
s2.setTense(SPhraseSpec.Tense.PAST);

TextSpec t1 = new TextSpec(); // create a TextSpec
t1.addSpec(s1);
t1.addSpec(s2);

String output = r.realiseDocument(t1); //Realiser r created earlier
System.out.println(output);

The output is:
I am happy, because I ate fish.

23 last modified:5/28/2008

Section XV - Generating paragraphs (TextSpec)

As we saw in the previous section, TextSpec allows you to create a sentence consisting
of a list of clauses. For example,

My cat likes fish, my dog likes bones and my horse
likes grass.

The code for producing this output is

TextSpec t1 = new TextSpec("my cat likes fish", "my dog likes bones", "my
horse likes grass");

TextSpecs are sentences by default but they can also be defined to generate paragraphs.
To create a paragraph you need to:

1. create an instance of TextSpec
2. add sentences to that instance (using the method addSpec) or include the

sentences in the constructor10 for TextSpec.
3. define the TextSpec instance as a paragraph rather than a single sentence (using

the method setParagraph).

Thus if we add the statement:

t1.setParagraph()

to the code above, the realiser will produce the following paragraph:

My cat likes fish. My dog likes bones. My horse
likes grass.

If you do not set the TextSpec instance to be a paragraph, simplenlg will, by default, treat
it as a single sentence.

10 ‘constructor’ is a Java term. It’s the line of Java code in which an instance of a class is created. The
constructor I’m referring to here is: TextSpec t1 = new TextSpec("my cat likes fish", "my dog likes
bones", "my horse likes grass");

24 last modified:5/28/2008

Section XVI - Generating a paragraph with strings, SPhraseSpecs and TextSpecs

You can combine strings, SPhraseSpecs and TextSpecs in a single TextSpec. See the
example below.

In this example, we used the cue phrase ‘however’ to smooth the transition from the first
sentence to the next one. Cue phrases often express how a sentence relates to the previous
clause or sentence and help sentences in a paragraph flow together.

Notice that in this example we did not need to indicate that we want to generate a
paragraph – simplenlg automatically did this for us i.e. we did not have to include the
statement t2.setParagraph. Why not? Because if you add a TextSpec (t1 in this
example) to another TextSpec (t2), they will automatically be considered separate
sentences.

String str1 = "John is going to Tesco";
String str2 = "Mary is going to Sainsburys";
TextSpec t1 = new TextSpec(); // create a TextSpec
t1.addSpec(str1);
t1.addSpec(str2);

SPhraseSpec p1 = new SPhraseSpec("I", "go", "school");
p1.setCuePhrase("however");
p1.setProgressive(true);

TextSpec t2 = new TextSpec();
t2.addSpec(t1);
t2.addSpec(p1);

String output = r.realiseDocument(t2); //Realiser r created earlier
System.out.println(output);

Output: John is going to Tesco and Mary is going to

Sainsburys. However I am going to school.

25 last modified:5/28/2008

Appendix A – NLG and simplenlg

What is NLG and how much of it does simplenlg do? NLG aims to produce
understandable text, typically from some nonlinguistic representation of info.

Communicative Goal

content determination
document structuring

lexicalization
referring expressions
aggregation

linguistic realisation
structure realisation

Surface Text

Figure 2: A typical NLG system architecture. From Reiter and Dale p.60.

Many NLG systems consist of three components which are connected together in a pipeline.
i.e. the output of document planning acts as input to microplanning and the output of the
microplanner is the input to the surface realiser. The table below briefly outlines the
different components of an NLG system and the shaded portion shows which tasks
simplenlg performs.

Surface
Realiser

Microplanner

Document
Planner

26 last modified:5/28/2008

Document

Planner

content
determination

decides what information will appear in the
output text. This depends on what your goal is,
who the audience is, what sort of input
information is available to you in the first place
and other constraints such as allowed text
length.

document
structuring

decides how chunks of content should be
grouped in a document, how to relate these
groups to each other and in what order they
should appear. For instance, when describing
last month’s weather, you might talk first about
temperature, then rainfall. Or you might start
off generally talking about the weather and
then provide specific weather events that
occurred during the month.

Microplanner

lexicalization decides what specific words should be used to
express the content. For example, the actual
nouns, verbs, adjectives and adverbs to appear
in the text are chosen from a lexicon. Particular
syntactic structures are chosen as well. For
example you can say ‘the car owned by Mary’
or you might prefer the phrase ‘Mary’s car’.

referring
expressions

decides which expressions should be used to
refer to entities (both concrete and abstract).
The same entity can be referred to in many
ways. For example March of last year can be
referred to as:

• March 2006
• March
• March of the previous year
• it

aggregation decides how the structures created by
document planning should be mapped onto
linguistic structures such as sentences and
paragraphs. For instance, two ideas can be
expressed in two sentences or in one:
The month was cooler than average. The month
was drier than average.

vs.
The month was cooler and drier than average.

27 last modified:5/28/2008

Surface

Realiser

linguistic
realisation

uses rules of grammar (about morphology and
syntax) to convert abstract representations of
sentences into actual text.

structure
realization

converts abstract structures such as paragraphs
and sentences into mark-up symbols which are
used to display the text.

Table 5: The shaded portion of the table shows how much nlg simplenlg performs

28 last modified:5/28/2008

Appendix B – simplenlg web pages

To download simplenlg, go to http://www.csd.abdn.ac.uk/~ereiter/simplenlg/

The web page also contains API documentation for simplenlg.

29 last modified:5/28/2008

Appendix C – simplenlg and Eclipse

Setting up simplenlg in Eclipse:
If you are using Eclipse to write your Java programs, you would

1. create a new Project (File>New>Project)
2. add the simplenlg library to the project’s build path by doing the following:

• go to the Eclipse menu and select Project>Properties>Java Build Path
• click on the Libraries tab
• click on the Add External jars button
• browse to the simplenlg jar file which you downloaded from the web
• select the simplenlg jar file and click ‘Open’
• click OK

3. In the project, create a new class which has the main method in it. In this
example, let’s call the new class TestMain.

4. At the top of the class, put in the following import statements:

import simplenlg.features.*;
import simplenlg.realiser.*;

Following these steps, you should have code that looks like the following:

Figure 3: A Java class which is ready to make use of the simplenlg library

import simplenlg.features.*;
import simplenlg.realiser.*;

public class TestMain {

/**
* @param args
*/

public static void main(String[] args) {
// TODO Auto-generated method stub

}

}

