
	

	 1	

How	Google	Translate	works	(May	2018)	
by		

Chris	Venour	
	

1	Introduction	

I	was	interested	in	seeing	how	Google	Translate's	state	of	the	art	translation	system	works.	This	
“sequence	to	sequence”	system,	which	is	sometimes	referred	to	as	an	encoder-decoder	
network,	is	described	here:	https://www.tensorflow.org/tutorials/seq2seq	
	
Google	has	provided	code	which	implements	this	model	and	I	used	that	code	to	create	and	
train	two	German	to	English	translators:	one	that	performs	a	greedy	search	when	picking	the	
English	words	of	a	translation	and	another	which	performs	a	beam	width	search.	
	
Google's	state	of	the	art	translation	system	(Google	Translate)	contains	features	such	as:	
	

• LSTM	cells	
• Gradient	clipping	
• Bi-directional	forward	propagation	
• Attention	mechanism	
• Bucketing	
• Teacher	forcing	

	
Each	of	these	features	is	described	in	Section	3.	

2	The	architecture	of	the	translators	

Google's	translation	system	has	an	encoder-decoder	architecture.	This	architecture,	shown	in	
Figure	1,	consists	of	two	Recurrent	Neural	Networks	(RNN):	an	encoder	RNN	(shown	in	blue	in	
the	figure)	and	a	decoder	RNN	(shown	in	red).	
	
	
	
	
	
	
	

	

	 2	

	
	

Figure	1:	The	translation	systems	use	an	encoder-decoder	architecture.	(Image	from	
https://www.tensorflow.org/tutorials/seq2seq).	

In	Figure	1	the	German	sentence	“Bitte	hör	dort	auf”	is	fed	into	the	encoder	RNN	and	the	
encoder	computes	a	vector	that	is	a	representation	of	the	entire	German	sentence.	This	vector	
is	sometimes	referred	to	as	a	"thought	vector"	in	the	literature.	The	decoder	network	then	
takes	the	thought	vector	as	input	and	uses	it	to	produce	an	English	translation	of	the	German	
sentence.	

2.1	The	Encoder	architecture	

Let's	take	a	closer	look	at	how	the	Encoder	RNN	outputs	the	thought	vector.	

	
Figure	2:	The	RNN	encoder

"thought	vector"	

	

	 3	

At	each	time	step	the	next	word	in	a	sentence	to	be	translated	is	passed	into	the	encoder	RNN.	
In	this	way,	the	RNN	scans	through	the	sentence	from	left	to	right.	The	RNN	shown	in	Figure	2	
has	three	different	parameters,	each	of	which	is	a	matrix	of	values:	𝑊"#	,	𝑊"",		and	𝑊$".	The	
𝑊"#	matrices,	which	appear	in	blue	at	each	time	step	in	Figure	2,	are	identical.	Similarly,	all	the	
green	𝑊""		matrix	values	are	identical,	as	are	the	red	𝑊$"	matrices.	The	values	in	these	three	
matrices	are	the	principal	things	that	are	learned	during	the	training	of	the	encoder.	
	
Let's	go	through	an	example	of	forward	propagation	in	this	encoder	network.	In	this	example,	
I'll	show	how	forward	propagation	works	in	a	vanilla	RNN.	The	Google	translator	isn't	a	vanilla	
RNN	and	uses	more	complicated	LSTM	cells,	however,	for	the	purpose	of	explaining	how	
forward	propagation	works	I'll	just	look	at	the	simpler	case	of	forward	propagation	within	an	
RNN	that	does	not	use	LSTM.	
	
Before	forward	propagation	occurs,	the	first	word	in	the	sentence	to	be	translated	("Bitte")	is	
turned	into	a	vector	of	numbers	𝑥&'(because	networks	can't	handle	raw	text:	data	processed	
by	any	neural	network,	including	RNNs,	ultimately	needs	to	be	numerical.	

Initially	a	word	is	assigned	a	vector	of	random	values	but	during	training,	the	values	of	this	word	
vector	and	all	the	other	word	vectors	of	the	German	words	in	the	training	set	are	adjusted	as	
the	system	learns	to	translate	from	German	to	English.	The	place	in	the	network	in	which	words	
are	mapped	to	vectors	is	called	the	embedding	layer	and	the	weights	of	this	embedding	layer,	
along	with	the	values	of		𝑊"#	,	𝑊"",		and	𝑊$"	(plus	the	bias	terms	in	the	equations	below)	are	
learned	during	the	training	of	the	RNN.	
	
Step	1:	The	first	step	of	forward	propagation	takes	the	embedding	vector	𝑥&'(for	the	word	
"Bitte"	and	the	value	of	the	previous	hidden	state	𝑎&*(to	compute	the	value	of		𝑎&'(.	
Specifically,	the	value	of	𝑎&'(is	computed	in	the	following	way:	

𝑎&'(= 𝑔(𝑊""𝑎&*(+	𝑊"#𝑥&'(+	𝑏")

𝑎&'(is	the	information	captured	by	the	RNN	at	timestep	1	and	𝑏"	is	the	bias	term	associated	
with	computing	the	𝑎&2(values.	There	is	no	timestep	0	but	a	value	for	𝑎&*(is	required	
nonetheless	in	order	to	compute	𝑎&'(and	so	𝑎&*(is	simply	a	vector	of	zeroes.	The	function	
𝑔()	is	an	activation	function	such	as	ReLu,	tanh	or	the	now	less	commonly	used	sigmoid	
function.	Activation	functions	such	as	this	introduce	non-linearity	into	a	neural	network.	
Without	activation	functions,	a	network	would	be	too	simple	and	would	be	unable	to	learn	how	
to	perform	complicated	tasks	such	as	machine	translation.	
	
	
Step	2:	A	value	for	𝑦&'(is	then	computed	in	the	following	way:	
	

𝑦&'(= 𝑔(𝑊$"𝑎&'(+	𝑏$)	

	

	 4	

	
	
The	RNN	encoder	shown	in	Figure	3	has	two	hidden	layers	and,	as	the	figure	shows,	the	𝑦&2(
values	computed	in	the	first	hidden	layer	are	the	means	by	which	the	first	hidden	layer	
communicates	with	the	second	hidden	layer.		

	
Figure	3:	The	Encoder	RNN	has	two	hidden	layers.

The	second	layer	doesn't	compute	𝑦&2(values	because	there	isn't	a	third	layer	to	pass	this	
information	to.	
	
Steps	1-2	described	above	are	then	repeated	for	each	word	in	the	German	sentence.	The	
general	equations	for	forward	propagation	-	that	is,	the	equations	to	compute	𝑎&2(and	𝑦&2(at	
timestep	t	-	are	thus:	
	

𝑎&2(= 𝑔(𝑊""𝑎&24'(+	𝑊"#𝑥&2(+	𝑏")	
	

𝑦&2(= 𝑔(𝑊$"𝑎&2(+	𝑏$)	
	
	
	
Once	the	last	word	vector	of	the	German	sentence	is	propagated	through	the	network,	the	
encoder	RNN	outputs	a	thought	vector	of	the	German	sentence	for	each	layer	and	these	
vectors	are	input	to	the	two	hidden	layers	of	the	decoder	network.	
	

	

	 5	

	
	
	
	
	
	
2.2	The	Decoder	architecture	
	
The	decoder	is	almost	identical	to	a	conditional	language	model,	an	example	of	which	is	shown	
in	Figure	4.		

	
Figure	4:	A	language	model.

Whereas	a	language	model	computes	the	probability	of	a	sentence	in	a	given	language,		
𝑃(𝑦&'(, 𝑦&7(, ⋯ , 𝑦&2(),	a	decoder	computes,	in	our	case,	the	probability	of	an	English	
translation	given	a	German	sentence:	𝑃(𝑦&'(, 𝑦&7(, ⋯ , 𝑦&2(|	𝑥&'(, 𝑥&7(, ⋯ , 𝑥&:(),	where	
the	𝑥	terms	are	words	in	the	German	sentence	and	the	𝑦 terms	are	words	in	the	English	
sentence.	And	instead	of	receiving	as	input	an	𝑎&*(vector	that's	initialized	as	a	vector	of	all	
zeroes	the	way	a	language	model	does,	the	decoder	network	takes	the	encoder's	thought	
vector	as	its	initial	input.	
	
Like	the	encoder,	the	decoder	used	for	this	project	has	two	hidden	layers.	The	second	hidden	
layer	outputs	𝑦&2(values	that	are	then	turned	into	one-hot	word	vectors	in	a	projection	layer	
so	that	the	words	the	RNN	proposes	as	good	translations	of	the	German	words	can	be	mapped	
into	actual	English	words.	
	
To	create	the	translator	used	in	this	project,	the	Encoder	and	Decoder	are	joined	in	the	way	
shown	in	Figure	5.	In	the	figure,	the	encoder	network	is	shown	in	blue	and	appears	on	the	left	
side	of	the	figure	and	the	decoder	network	appears	in	red.		

	

	

	 6	

	
	

Figure	5:	The	translator	used	in	this	project	has	an	embedding	layer	and	two	hidden	layers.	The	encoder	RNN	appears	in	blue	
and	the	decoder	RNN	appears	in	red.	(Image	from	https://www.tensorflow.org/tutorials/seq2seq).	

	

3	Special	features	of	the	translators	

Google	Translate	uses	state	of	the	art	features	which	I'll	briefly	describe	in	this	section.	
	
3.1	LSTM	cells	
	
The	basic	or	vanilla	type	of	RNN	described	in	Section	2.1	is	unable	to	capture	long	range	
dependencies	in	a	sentence.	For	example	the	following	sentence	has	a	long	range	dependency	
between	the	subject	of	the	sentence	and	its	verb	which	occurs	at	the	end	of	the	sentence:	
	

The	three	passengers,	shut	up	in	the	narrow	compass	of	one	lumbering	old	mail	coach,	
have	fallen	asleep.	

	
The	subject	"The	three	passengers"	and	the	verb	phrase	"have	fallen	asleep"	have	to	agree	in	
number:	you	couldn't	say	"The	three	passengers	...	has	fallen	asleep"	for	example.	

	

	 7	

It	is	difficult,	however,	for	a	regular	RNN	to	learn	to	remember	the	number	of	the	subject	of	the	
sentence	in	order	to	generate	the	proper	verb	form	that	occurs	later	in	the	sentence.	One	of	
the	reasons	why	the	RNN	can't	remember	things	for	long	is	the	"vanishing	gradient"	problem.	
	
During	backpropagation,	the	network	updates	a	weight	w	in	the	following	way:	𝑤	 = 	𝑤	−	∝ >?

>@
	

where	J	is	the	cost	function,	∝	is	the	learning	rate	and	>?
>@

	is	the	derivative	of	the	cost	function	
with	respect	to	the	weight	w	at	a	given	point.	The	vanishing	gradient	problem	describes	the	
situation	when	the	>?

>@
	term	becomes	smaller	-	often	exponentially	smaller	-	as	backpropagation	

progresses.	This	is	a	problem	because	if	the	>?
>@

	term	is	very	small,	the	weights	in	the	early	layers	
of	the	network	will	be	adjusted	by	only	a	miniscule	amount	and	training	will	hardly	progress.		
	
When	LSTM	cells	are	used	in	place	of	just	a	regular	RNN	cell,	however,	the	vanishing	gradient	
problem	is	resolved	and	the	RNN	is	able	to	keep	track	of	long	range	dependencies	in	a	
sentence.	These	problems	are	resolved	because	an	LSTM	cell	provides	a	memory	cell	along	with	
update	and	forget	gates.	Using	memory	cells	and	update	and	forget	gates,	an	RNN	can	learn	to	
store	information	about	an	early	part	of	a	sentence	that	is	required	for	properly	handling	a	later	
part	of	the	sentence,	and	to	forget	that	information	when	it	is	no	longer	needed.	A	detailed	
description	of	the	LSTM	cell	is	outside	the	scope	of	this	document,	but	the	interested	reader	
can	find	more	information	about	this	topic	here:	http://colah.github.io/posts/2015-08-
Understanding-LSTMs/		

3.2	Gradient	clipping	

The	>?

>@
	term	in	the	equation	above	can	instead	grow	exponentially	during	backpropagation	and	

this	problem	is	called	the	"exploding	gradient"	problem.	This	problem	describes	the	situation	
when	weights	in	the	early	layers	of	the	network	are	drastically	altered	-	so	much	so	that	the	
weights'	optimal	values	are	unlikely	to	be	found	because	the	weights	are	not	being	tuned	finely	
enough	during	backpropagation.	An	operation	known	as	"gradient	clipping"	addresses	the	
exploding	gradient	problem.	Gradient	clipping	simply	reduces	the	size	of	the	>?

>@
	vector,	without	

altering	the	direction	of	this	vector,	to	an	allowed	maximum	(defined	by	the	programmer).	
	
	
3.3	Bi-directional	forward	propagation	
	
Another	state	of	the	art	feature	of	the	Google	translation	system	is	bi-directional	forward	
propagation.		
	
Figure	6	shows	a	normal	or	uni-directional	RNN	layer	into	which	words	of	a	sentence	are	fed	
from	left	to	right.	As	we	have	seen,	the	forward	propagation	formula	for	computing	𝑦&2(is:	
	

	

	 8	

𝑦&2(= 𝑔(𝑊$"𝑎&2(+	𝑏$)

	

	
	
Figure	6:	A	uni-directional	RNN.	

	
In	the	past,	researchers	found	that	translation	results	often	improved	when	the	sentence	to	be	
translated	was	fed	into	an	RNN	in	reverse	order.	A	bi-directional	RNN	takes	this	empirical	
observation	into	account:	it	performs	forward	propagation	on	a	sentence	in	both	normal	and	
reverse	order.	A	bi-directional	RNN	adds	a	backward	recurrent	layer:	the	green	cells	𝑎&2(in	
Figure	7	represent	a	backward	recurrent	layer	that	has	been	added	to	the	uni-directional	RNN	
of	Figure	6.	
	
As	Figure	7	shows,	cells	of	the	bi-directional	RNN	accept	the	words	of	a	sentence	in	left	to	right	
order	and	the	green	cells	accept	the	words	of	the	sentence	in	reverse	order.	Note	that	Figure	7	
shows	forward	propagation	from	the	front	of	the	sentence	to	the	end	and	also	forward	
propagation	from	the	end	of	the	sentence	to	the	beginning	-	backpropagation	is	not	what	is	
being	depicted	here!	Providing	the	RNN	with	information	about	words	that	precede	a	given	
word	A	and	words	that	follow	word	A,	helps	the	network	choose	a	better	translation	for	word	
A.	

	

	 9	

	
Figure	7:	Forward	propagation	in	a	bi-directional	RNN.	Backpropagation	is	not	being	shown	here,	only	forward	prop.	

	
	
In	a	bi-directional	RNN,	the	forward	propagation	equation	for	computing	𝑦&2(simply	adds	the	
following	term,	shown	in	green:	
	

𝑦&2(= 𝑔(𝑊$"[𝑎&2(|	𝑎&2(] 	+ 𝑏$)	
	
This	term	corresponds	to	the	green	cells	depicted	in	Figure	7.	
	
	
3.4	Attention	mechanism	
	
An	attention	mechanism	improves	the	translators'	accuracy	and	enables	them	to	process	long	
sentences.	The	attention	mechanism	helps	in	this	regard	by	equipping	the	translators	to	learn	
to	pay	attention	to	just	relevant	words	in	the	German	sentence,	rather	than	to	all	the	words,	
when	attempting	to	find	a	good	translation	of	a	given	German	word.	
	
Let's	say	the	encoder	RNN	is	bi-directional	and	has	a	single	hidden	layer	like	the	network	shown	
in	Figure	7.	If	we	add	a	decoder	RNN	and	an	attention	mechanism	to	this	system,	the	resulting	
system	is	shown	in	Figure	8.	Let's	say	the	German	sentence	to	translate	is	"	Sogar	jetzt	ist	die	
Axt	an	die	Wurzel	der	Bäume	gelegt."	(which	is	translated	into	English	as	"Even	now	the	axe	is	
laid	to	the	root	of	the	tree").	In	Figure	8,	the	system	has	chosen	the	first	word	of	the	translation	
to	be	the	word	"Even"	and	the	orange	lines	represent	the	attention	mechanism	at	work.	Each	
word	in	the	German	sentence	has	an	attention	weight	∝&',2(associated	with	it	when	deciding	
what	the	first	word	in	the	English	translation	should	be.	A	different	set	of	weights	∝&7,2(are	
associated	with	choosing	the	second	word	of	the	English	translation.	
	

	

	 10	

During	training,	the	translator	learns	how	much	weight	to	give	words	in	the	German	sentence	
when	predicting	an	English	word1.	For	example	when	searching	for	a	good	English	translation	of	
the	first	word	in	a	German	sentence,	the	translator	learns	to	focus	mostly	on	just	the	first	few	
words	of	the	German	sentence	(i.e.	a	local	window	of	words)	and	to	pay	less	attention	to	less	
relevant	words	that	appear	later	in	the	German	sentence.	
	
	

	
Figure	8:	Bi-directional	network	which	uses	the	Attention	mechanism.	

	
	
3.	5	Bucketing	
	
Table	1	shows	the	longest	sentence	lengths	(in	terms	of	number	of	words)	in	the	training,	
validation	and	test	sets.	Given	these	statistics,	I	defined	the	maximum	sentence	length	allowed	
for	a	German	or	English	sentence	to	be	50	tokens.	
	
	
	
	

																																																								
1	The	parameters	in	Figure	7	which	determine	the	value	of	∝&',2(are	𝑎&2(,	𝑎&2(,	and	𝑠&*(.	The	
parameters	which	determine	the	value	of	∝&7,2(are	𝑎&2(,	𝑎&2(,	and	𝑠&'(etc.	

	

	 11	

Table	1:	Maximum	sentence	lengths	in	the	datasets.	

dataset		 maximum	sentence	length	
(i.e.	number	of	words	

English-training	 47	
English-validation	 48	
English-test	 48	
German-training	 47	
German-validation	 44	
German-test	 48	
	
	
Instead	of	padding	all	sentences	(with	0's)	so	that	all	the	sentences	have	a	length	of	50	tokens,	
the	translators	used	in	the	project	do	the	following:	when	a	variable	length	sentence	is	passed	
to	a	translator,	the	translator	puts	that	sentence	into	a	bucket	which	matches	the	sentence's	
size.	For	instance	the	translators	that	I	implemented	and	describe	later	on	in	this	document	
create	the	buckets	shown	in	Table	2.	
	
	
Table	2:	Sentences	in	the	training	set	were	sorted	into	5	different	buckets	and	were	padded	accordingly.	

bucket	no.	 number	of	tokens	in	a	sentence	
	

1	 1-10	
2	 11-20	
3	 21-30	
4	 31-40	
5	 41-50	
	
	
Sentences	placed	in	bucket	#1,	for	example,	contain	1-10	tokens	and	are	padded	to	a	sentence	
length	of	10	and	sentences	in	bucket	#2	are	padded	to	a	sentence	length	of	20	etc.	
	
Each	bucket	is	then	fed	into	the	translator	as	a	mini-batch	that	is	used	for	training	the	network.	
Bucketing	reduces	training	time	and	the	amount	of	memory	space	that	would	be	required	if	all	
sentences	were	padded	to	the	maximum	token	length	of	50.	Bucketing	also	improves	the	
accuracy	of	the	translators	because	short	sentences	are	only	padded	to	a	sequence	length	of	10	
rather	than	50	tokens	and	translating	a	sequence	of	10	tokens	is	easier	than	translating	a	
sequence	of	50	tokens.	Figure	9	is	a	representation	of	how	bucketing	works.	
	

	

	 12	

	
Figure	9:	How	bucketing	works.	Short	(blue)	sentences	that	appear	in	the	data	on	the	left	are	placed	into	the	topmost	bucket	on	
the	right	hand	side	and	are	padded	to	a	sentence	length	of	10	words.	Red	sentences	are	a	bit	longer	than	the	short	blue	
sentences	and	they	are	placed	in	a	separate	bucket	-	the	second	bucket	from	the	top	on	the	right	hand	side.	These	red	sentences	
are	padded	to	a	sentence	length	of	20	words.	etc.	(Image	from		https://www.youtube.com/watch?v=RIR_-Xlbp7s&t=1033s)	

	
3.6	Teacher	forcing	
	
“Teacher	forcing”	is	the	concept	of	using	the	real	target	output	as	the	next	input	to	the	top	
layer	of	the	decoder,	instead	of	using	the	decoder’s	guess	as	the	next	input.	As	Figure	5	shows,	
the	correct	target	words	are	run	through	the	embedding	and	hidden	layers	of	the	decoder	(the	
bottom	three	layers	of	the	decoder	network,	shown	in	red	in	the	figure)	and	replace	the	value	
predicted	by	the	decoder	at	time	t	with	the	correct	answer.		
	
This	is	like	a	student	receiving	immediate	feedback	from	a	teacher	that	he	chose	the	wrong	
word	for	a	translation.	This	is	useful	because	it	prevents	him	from	making	further	errors	based	
on	that	error.	Instead	of	keeping	that	poorly	translated	word	around	in	the	translation	and	
impairing	subsequent	word	choices/translations,	the	decoder	network	is	told	what	the	answer	
should	have	been.	In	other	words,	the	correct	word	translation	at	time	t	rather	than	the	
decoder's	possibly	incorrect	prediction	is	input	into	the	t+1	node	at	the	top	of	the	red	decoder	
network	when	it	decides	what	the	t+1	word	translation	should	be.	
	

4	Preparing	data	for	training	
	
Table	3	shows	the	sizes	of	the	training,	validation	and	test	sets.	The	data	I	used	to	train	the	
translators	I	implemented	was	already	tokenized	and	all	the	letters	of	the	words	were	turned	
into	lowercase,	so	no	further	pre-processing	was	required.		
	
	

	

	 13	

Table	3:	The	number	of	datapoints	in	the	training,	validation	and	test	sets.	

dataset		 size	(i.e.	number	of	
sentence	pairs)	

training	 179,643	
validation	 2433	
test	 1178	
	
	

5	Results	
	
The	translator	was	trained	for	12	epochs	and	this	took	12	hours	on	a	GPU	I	rented	from	Amazon	
Web	Service	(AWS).	
	
Table	4	shows	the	human-produced	translations	of	the	first	20	German	sentences	in	the	test	
set.	The	first	two	columns	of	Table	5	show	the	output	from	the	translator	that	performs	a	beam	
search	with	a	beam	width	of	5	and	the	output	from	the	greedy	search	translator	on	the	20	test	
set	examples.	
	
The	BLEU	scores	achieved	by	the	translator	when	it	uses	beam	search	and	greedy	search	are	
discussed	in	Section	6.	
	
Table	4:	The	human	translations	of	the	first	20	German	sentences	in	the	test	set.	

1. when	i	was	in	my	20s	,	i	saw	my	very	first	psychotherapy	client	.	
2. i	was	a	ph.d.	student	in	clinical	psychology	at	berkeley	.	
3. she	was	a	26	-	year	-	old	woman	named	alex	.	
4. now	alex	walked	into	her	first	session	wearing	jeans	and	a	big	slouchy	top	,	and	she	dropped	onto	the	couch	

in	my	office	and	kicked	off	her	flats	and	told	me	she	was	there	to	talk	about	guy	problems	.	
5. now	when	i	heard	this	,	i	was	so	relieved	.	
6. my	classmate	got	an	arsonist	for	her	first	client	.	
7. and	i	got	a	twentysomething	who	wanted	to	talk	about	boys	.	
8. this	i	thought	i	could	handle	.	
9. but	i	did	n't	handle	it	.	
10. with	the	funny	stories	that	alex	would	bring	to	session	,	it	was	easy	for	me	just	to	nod	my	head	while	we	

kicked	the	can	down	the	road	.	
11. “	thirty	's	the	new	20	,	”	alex	would	say	,	and	as	far	as	i	could	tell	,	she	was	right	.	
12. work	happened	later	,	marriage	happened	later	,	kids	happened	later	,	even	death	happened	later	.	
13. twentysomethings	like	alex	and	i	had	nothing	but	time	.	
14. but	before	long	,	my	supervisor	pushed	me	to	push	alex	about	her	love	life	.	
15. i	pushed	back	.	
16. i	said	,	“	sure	,	she	's	dating	down	,	she	's	sleeping	with	a	knucklehead	,	but	it	's	not	like	she	's	going	to	marry	

the	guy	.	”	
17. and	then	my	supervisor	said	,	“	not	yet	,	but	she	might	marry	the	next	one	.	
18. besides	,	the	best	time	to	work	on	alex	's	marriage	is	before	she	has	one	.	”	
19. that	's	what	psychologists	call	an	“	aha	!	”	moment	.	

	

	 14	

20. yes	,	people	settle	down	later	than	they	used	to	,	but	that	did	n't	make	alex	's	20s	a	developmental	
downtime	.	

	
	
	
Table	5:	Output	from	the	two	translators	on	the	first	20	German	sentences	in	the	test	set.	

Output	from	the	translator	that	performs	
beam	width	search	(bw	=	5)	
	

Output	from	the	greedy	search	translator	

1. when	i	was	in	my	20s	<unk>	i	had	my	first	
psychotherapy	patient	<unk>	

2. i	was	a	graduate	student	and	studied	medical	
psychology	in	berkeley	<unk>	

3. she	was	a	26	<unk>	old	woman	called	alex	<unk>	
4. when	alex	came	into	the	first	session	<unk>	she	

wore	jeans	and	her	one	<unk>	top	<unk>	she	fell	on	
the	couch	in	my	office	<unk>	their	sandals	in	my	
office	<unk>	their	eyes	were	going	to	talk	about	
men	's	men	<unk>	

5. and	when	i	heard	this	<unk>	i	was	relieved	<unk>	
6. i	mean	<unk>	got	an	unparalleled	patient	as	a	first	

patient	<unk>	
7. and	i	got	a	woman	in	the	'20s	who	wanted	to	talk	

about	boys	<unk>	
8. i	'll	get	rid	of	this	<unk>	i	thought	<unk>	
9. but	i	did	n't	get	it	up	<unk>	
10. with	the	funny	stories	that	alex	with	the	session	

<unk>	it	was	easy	for	me	to	zoom	down	with	the	
head	<unk>	while	we	're	talking	about	problems	
<unk>	

11. “	30	is	the	new	20	”	said	<unk>	alex	and	as	far	as	i	
could	appreciate	that	<unk>	

12. work	later	came	later	later	later	later	later	<unk>	
kids	came	later	later	<unk>	even	the	death	came	
later	later	<unk>	

13. people	like	alex	and	i	had	nothing	than	time	<unk>	
14. but	soon	i	was	troubled	my	mentor	<unk>	alex	life	in	

question	<unk>	
15. i	thought	about	it	<unk>	
16. i	said	<unk>	“	yeah	<unk>	she	meets	men	under	

your	level	<unk>	she	's	sleeping	with	men	under	
their	own	level	<unk>	she	will	not	marry	him	<unk>	
”	

17. and	i	said	<unk>	“	not	yet	<unk>	but	maybe	you	'll	
get	married	the	next	thing	<unk>	

18. it	's	also	the	best	time	to	work	before	before	she	's	
married	<unk>	”	

19. this	is	what	psychologists	call	a	math	moment	<unk>	
20. yeah	<unk>	people	get	down	down	and	did	n't	alex	

and	did	that	alex	”	not	to	me	<unk>	

1. when	i	was	in	my	20s	<unk>	i	had	my	first	
psychotherapy	patient	<unk>	

2. i	was	a	student	student	<unk>	studied	clinical	
psychology	<unk>	

3. she	was	a	26	<unk>	year	<unk>	old	woman	named	
alex	<unk>	

4. when	alex	was	the	first	session	<unk>	she	was	
wearing	jeans	and	one	<unk>	top	<unk>	she	fell	on	
the	sofa	in	my	office	<unk>	their	sandals	<unk>	and	
told	me	<unk>	she	would	be	there	to	talk	about	men	
<unk>	

5. and	when	i	heard	<unk>	i	was	relieved	<unk>	
6. my	<unk>	was	a	veteran	a	veteran	as	a	first	patient	

<unk>	
7. and	i	got	a	woman	in	the	20s	who	wanted	to	talk	

about	boys	<unk>	
8. i	'll	get	<unk>	i	thought	<unk>	i	thought	<unk>	
9. but	i	do	n't	get	it	<unk>	
10. with	the	fun	stories	that	brought	alex	into	the	

meeting	<unk>	it	was	easy	to	me	<unk>	just	with	my	
head	<unk>	just	as	we	are	<unk>	

11. “	30	is	the	new	20	<unk>	”	alex	and	as	far	as	i	could	
judge	<unk>	she	was	right	<unk>	

12. work	came	later	later	<unk>	married	came	later	
<unk>	children	came	later	<unk>	

13. people	in	the	20s	<unk>	like	alex	<unk>	and	i	had	
nothing	<unk>	

14. but	soon	<unk>	i	'm	pushing	my	mentor	<unk>	alex	
<unk>	

15. i	thought	about	it	<unk>	
16. i	said	<unk>	“	yes	<unk>	she	's	true	with	men	under	

your	level	<unk>	you	sleep	with	one	child	<unk>	but	
she	will	not	marry	him	<unk>	”	

17. and	there	was	my	mentor	<unk>	“	not	<unk>	but	
maybe	<unk>	you	'll	get	your	next	<unk>	

18. it	's	also	the	best	time	to	work	<unk>	when	you	get	
married	<unk>	”	

19. this	is	<unk>	what	psychologists	call	a	great	moment	
<unk>	

20. yes	<unk>	people	get	down	<unk>	but	this	did	n't	say	
<unk>	alex	<unk>	did	n't	go	<unk>	

	

	 15	

	
	
	

6	Questions	
	
	
1. Why	does	the	greedy	decoding	algorithm	make	search	errors	even	though	it	is	possible	to	

generate	unbiased	samples	from	the	translation	model?	
	
Greedy	search	generates	the	most	likely	first	word	according	to	the	conditional	language	
model	𝑃(𝑦&'(|	𝑥)	where	x	is	the	German	sentence	to	be	translated	and	𝑦&'(is	the	first	
English	word	chosen	for	the	translation.	Greedy	search	then	picks	the	2nd	word	that	seems	
most	likely	given	x	and		𝑦&'(i.e.	𝑃(𝑦&7(|	𝑥, 𝑦&'().	
	
This	is	not	a	good	strategy	however	and	does	not	guarantee	an	optimal	or	even	a	very	good	
translation.	We	want	to	maximize	𝑃(𝑦&'(, 𝑦&7(, ⋯ , 𝑦&2(|	𝑥&'(, 𝑥&7(, ⋯ , 𝑥&:()	and	this	
means	sometimes	rejecting	short	term	rewards	for	longer	term	rewards	-	i.e.	rejecting	a	
word	that	yields	the	highest	probability	at	time	t	because	in	the	long	run	this	choice	does	
not	lead	to	a	higher	overall	probability	score	which	a	less	probable	word	chosen	at	time	t	
would	have	led	to.	
	
The	computer	scientist	Andrew	Ng	gives	the	following	illustration2.	Let's	say	a	French	to	
English	translation	system	is	given	the	following	sentence	to	translate:	"Jane	visite	l'Afrique	
en	Septembre".	The	greedy	search	is	more	likely	to	pick	the	translation	"Jane	is	going	to	be	
visiting	Africa	in	September"	rather	than	the	less	wordy	and	superiour	translation	"Jane	is	
visiting	Africa	in	September".	This	is	because,	when	choosing	the	third	word,	the	greedy	
search	is	more	likely	to	select	the	word	'going'	rather	than	the	word	'visiting'	because	the	
former	word	is	more	common	than	the	latter	and	would	likely	yield	a	higher	probability	
score.	This	choice,	which	in	the	short	term	seems	best,	leads	to	an	inferiour	translation	in	
the	long	run.	
	
Beam	search,	however,	will	nearly	always	produce	better	results	than	greedy	search	
because	beam	search	entertains	multiple	paths/translations	down	a	tree	of	possibilities.	
The	testing	results,	which	are	described	in	the	answer	to	question	#2,	support	this	
assertion:	when	the	translator	used	beam	search	with	a	beam	width	of	5	(i.e.	the	5	best	
greedy	choices/paths	were	considered	in	the	tree	as	the	translation	progressed),	it	achieved	
significantly	higher	BLEU	scores	than	when	greedy	search	was	used.	

																																																								
2	The	illustration	by	Andrew	Ng	is	from	https://www.coursera.org/learn/nlp-sequence-
models/lecture/v2pRn/picking-the-most-likely-sentence	

	

	 16	

	
	
	
2. Sample	20	translations	of	the	test	set.	What	is	the	min/max/mean/median/stddev	of	the	

BLEU	score?	How	do	these	compare	to	the	BLEU	score	obtained	by	the	greedy	decoder?	
	
BLEU	scoring	was	performed	on	the	first	20	translations	of	the	test	set	using	the	multi-
bleu.pl	program.	However,	this	program	appears	to	have	failed	to	give	proper	BLEU	
statistics	for	13/20	of	the	sentences	output	by	the	translators.	These	sentences	received	a	
BLEU	score	of	0,	not	because	all	of	them	were	terrible	translations	but	because	the	perl	
program	appears	to	have	failed	in	some	way.	For	example	in	all	the	cases	when	a	BLEU	
score	of	0	was	output,	the	following	warning	message	was	output	by	the	multi-bleu	
program:	"Use	of	uninitialized	value	in	division".		
	
Instead	of	spending	hours	investigating	why	this	perl	program	may	or	may	not	have	been	
failing,	I	performed	an	additional	BLEU	score	test	using	the	Python	module	NLTK.	All	the	
score	results	-	from	the	multi-bleu	perl	program	and	the	NLTK	bleu	method	appear	in	Tables	
6	-	9.	
	
Both	BLEU	scoring	methods	show	that	beam-width	search,	with	a	beam-width	of	5,	
produced	significantly	better	results	than	greedy	searching.	
	
	

Table	6:	Greedy	search	multi-BLEU	scores	

multi-BLEU	scores	(greedy	search)	 statistics	
20.33,	0,	21.23,	7.5,	0,	0,	24.09,	0,0,0,18.26,	
0,	11.21,	0,0,0,0,13.10,0,0	

min:		0.0	
max:		24.09	
mean:		5.786	
median:		0.0	
std-dev:		8.54911012913	

	
	

Table	7:	Greedy	search	NLTK	BLEU	scores	

NLTK	BLEU	scores	(greedy	search)	 statistics	
68.52,	56.65,	65.90,	56.81,	62.36,	27.16,	
68.16,	28.10,	46.85,	53.04,	62.59,	34.68,	
49.089,	22.03,	35.93,	35.42,	35.00,	44.58,	
59.97,	31.87	

min:		22.03	
max:		68.52	
mean:		47.24	
median:		47.97	
std-dev:		14.67	

	
	
	
	

	

	 17	

	
Table	8:	Beam	width	=	5	search	multi-BLEU	scores	

multi-BLEU	scores	(beam	width=5)	 statistics	
41.61,	0,	29.38,	14.04,	32.47,	0,	49.20,	0,	
36.56,	32.86,	27.64,	0,	53.73,	0,	0,	10.28,	0,	
24.67,	0,	0	

min:		0.0	
max:		53.73	
mean:		17.62	
median:		12.16	
std-dev:		18.49	

	
	
	

Table	9:	Beam	width	=	5	search	NLTK	BLEU	scores	

NLTK	BLEU	scores	(beam-width=5)	 statistics	
68.52,	55.96,	61.36,	51.42,	66.41,	29.37,	
67.10,	35.52,	54.13,	62.63,	51.34,	36.99,	
62.39,	28.19,	35.93,	38.30,	45.50,	58.84,	
65.84,	36.01	

min:		28.1929527089	
max:		68.5212231981	
mean:		50.5869710146	
median:		52.7714306983	
std-dev:		13.3352804297	

	
	
	
	

3. Do	you	expect	word	embeddings	for	English	and	German	words	that	mean	the	same	to	be	
“close”	in	terms	of	cosine	similarity?	Why	or	why	not?	

	
	
The	translators	I	implemented	contain	two	RNNs	each:	an	encoder	RNN	and	a	decoder	RNN.	
These	two	RNNs	are	linked	together	to	accomplish	an	ultimate	final	goal:	taking	a	German	
sentence	and	outputting	an	English	translation.	However,	in	pursuing	this	final	goal,	the	two	
RNNs	have	more	immediate	goals	that	are	distinct.	The	Encoder	RNN	consumes	the	German	
sentence	and	outputs	thought	vectors	which	are	passed	to	the	Decoder	RNN.	The	Decoder	RNN	
processes	the	correct	English	translation	of	the	sentence	(because	it	performs	"teacher	
forcing")	and	uses	that	processing,	along	with	the	thought	vectors,	to	predict	the	next	English	
words.		
	
Each	of	these	RNNs	has	its	own	distinct	embedding	layer	and	each	is	pursuing	a	distinct	
immediate	goal.	The	Encoder	RNN	aims	to	produce	the	most	useful	thought	vectors	(i.e.	
representations	of	the	German	sentence	as	a	whole)	and	the	Decoder	RNN	aims	to	predict	the	
correct	English	word	prediction	using	those	thought	vectors.	Because	the	Encoder	and	Decoder	
have	different	immediate	goals,	it	is	unlikely	that	the	embeddings	for	the	German	words	and	
the	embeddings	for	their	English	translations	will	have	a	high	cosine	similarity.	
	
	

